-
Previous Article
Well-posedness in $ H^1 $ for generalized Benjamin-Ono equations on the circle
- DCDS Home
- This Issue
-
Next Article
Well-posedness for regularized nonlinear dispersive wave equations
Remarks on the semirelativistic Hartree equations
1. | Department of Mathematics, and Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju 561-756, South Korea |
2. | Department of Mathematics, Hokkaido University, Sapporo 060-0810 |
3. | Department of Mathematics, Osaka University, Toyonaka 563-0043 |
4. | Department of Mathematics, POSTECH, Pohang 790-784, South Korea |
[1] |
Kiyeon Lee. Low regularity well-posedness of Hartree type Dirac equations in 2, 3-dimensions. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3683-3702. doi: 10.3934/cpaa.2021126 |
[2] |
Huy Tuan Nguyen, Nguyen Anh Tuan, Chao Yang. Global well-posedness for fractional Sobolev-Galpern type equations. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2637-2665. doi: 10.3934/dcds.2021206 |
[3] |
Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure and Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831 |
[4] |
Dan-Andrei Geba, Kenji Nakanishi, Sarada G. Rajeev. Global well-posedness and scattering for Skyrme wave maps. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1923-1933. doi: 10.3934/cpaa.2012.11.1923 |
[5] |
Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1 |
[6] |
Myeongju Chae, Soonsik Kwon. Global well-posedness for the $L^2$-critical Hartree equation on $\mathbb{R}^n$, $n\ge 3$. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1725-1743. doi: 10.3934/cpaa.2009.8.1725 |
[7] |
Yanfang Gao, Zhiyong Wang. Minimal mass non-scattering solutions of the focusing L2-critical Hartree equations with radial data. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1979-2007. doi: 10.3934/dcds.2017084 |
[8] |
Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181 |
[9] |
Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure and Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273 |
[10] |
Anudeep Kumar Arora. Scattering of radial data in the focusing NLS and generalized Hartree equations. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6643-6668. doi: 10.3934/dcds.2019289 |
[11] |
Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure and Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35 |
[12] |
Yonggeun Cho, Tohru Ozawa. On radial solutions of semi-relativistic Hartree equations. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 71-82. doi: 10.3934/dcdss.2008.1.71 |
[13] |
Jinkai Li, Edriss Titi. Global well-posedness of strong solutions to a tropical climate model. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4495-4516. doi: 10.3934/dcds.2016.36.4495 |
[14] |
Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657 |
[15] |
Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563 |
[16] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382 |
[17] |
Changhun Yang. Scattering results for Dirac Hartree-type equations with small initial data. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1711-1734. doi: 10.3934/cpaa.2019081 |
[18] |
Benjamin Dodson. Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1905-1926. doi: 10.3934/dcds.2013.33.1905 |
[19] |
Ming Wang. Sharp global well-posedness of the BBM equation in $L^p$ type Sobolev spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5763-5788. doi: 10.3934/dcds.2016053 |
[20] |
Márcio Cavalcante, Chulkwang Kwak. Local well-posedness of the fifth-order KdV-type equations on the half-line. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2607-2661. doi: 10.3934/cpaa.2019117 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]