# American Institute of Mathematical Sciences

February  2009, 23(1&2): 197-219. doi: 10.3934/dcds.2009.23.197

## Homogenization of oscillating boundaries

 1 Université Paris-Est, Laboratoire d’Analyse et de Mathématiques Appliquées, CNRS UMR 8050, CMC Avenue du Général De Gaulle, 94010 Créteil, France 2 Storgatan 1, 75331 Uppsala, Sweden

Received  November 2007 Revised  March 2008 Published  September 2008

A variational problem on a sequence of 2-dimensional domains with oscillating boundaries is studied. Using the periodic unfolding method, the homogenized problem is obtained in the limit as the period length approaches zero. Several extensions are also given. In this framework, a result of strong convergence is obtained which is new.
Citation: Alain Damlamian, Klas Pettersson. Homogenization of oscillating boundaries. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 197-219. doi: 10.3934/dcds.2009.23.197
 [1] Zhanying Yang. Homogenization and correctors for the hyperbolic problems with imperfect interfaces via the periodic unfolding method. Communications on Pure and Applied Analysis, 2014, 13 (1) : 249-272. doi: 10.3934/cpaa.2014.13.249 [2] Elvira Zappale. A note on dimension reduction for unbounded integrals with periodic microstructure via the unfolding method for slender domains. Evolution Equations and Control Theory, 2017, 6 (2) : 299-318. doi: 10.3934/eect.2017016 [3] Micol Amar. A note on boundary layer effects in periodic homogenization with Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 537-556. doi: 10.3934/dcds.2000.6.537 [4] Hiroshi Matano, Ken-Ichi Nakamura, Bendong Lou. Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit. Networks and Heterogeneous Media, 2006, 1 (4) : 537-568. doi: 10.3934/nhm.2006.1.537 [5] Laura Sigalotti. Homogenization of pinning conditions on periodic networks. Networks and Heterogeneous Media, 2012, 7 (3) : 543-582. doi: 10.3934/nhm.2012.7.543 [6] Sunghan Kim, Ki-Ahm Lee, Henrik Shahgholian. Homogenization of the boundary value for the Dirichlet problem. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6843-6864. doi: 10.3934/dcds.2019234 [7] Yao Xu, Weisheng Niu. Periodic homogenization of elliptic systems with stratified structure. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2295-2323. doi: 10.3934/dcds.2019097 [8] Ben Schweizer, Marco Veneroni. The needle problem approach to non-periodic homogenization. Networks and Heterogeneous Media, 2011, 6 (4) : 755-781. doi: 10.3934/nhm.2011.6.755 [9] Michel Lenczner. Homogenization of linear spatially periodic electronic circuits. Networks and Heterogeneous Media, 2006, 1 (3) : 467-494. doi: 10.3934/nhm.2006.1.467 [10] Morteza Fotouhi, Mohsen Yousefnezhad. Homogenization of a locally periodic time-dependent domain. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1669-1695. doi: 10.3934/cpaa.2020061 [11] Andriy Bondarenko, Guy Bouchitté, Luísa Mascarenhas, Rajesh Mahadevan. Rate of convergence for correctors in almost periodic homogenization. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 503-514. doi: 10.3934/dcds.2005.13.503 [12] Rémi Goudey. A periodic homogenization problem with defects rare at infinity. Networks and Heterogeneous Media, 2022  doi: 10.3934/nhm.2022014 [13] Gregory A. Chechkin, Tatiana P. Chechkina, Ciro D’Apice, Umberto De Maio. Homogenization in domains randomly perforated along the boundary. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 713-730. doi: 10.3934/dcdsb.2009.12.713 [14] Erik Kropat. Homogenization of optimal control problems on curvilinear networks with a periodic microstructure --Results on $\boldsymbol{S}$-homogenization and $\boldsymbol{Γ}$-convergence. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 51-76. doi: 10.3934/naco.2017003 [15] Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems and Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025 [16] Patrizia Donato, Florian Gaveau. Homogenization and correctors for the wave equation in non periodic perforated domains. Networks and Heterogeneous Media, 2008, 3 (1) : 97-124. doi: 10.3934/nhm.2008.3.97 [17] Patrick Henning. Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems. Networks and Heterogeneous Media, 2012, 7 (3) : 503-524. doi: 10.3934/nhm.2012.7.503 [18] François Murat, Ali Sili. A remark about the periodic homogenization of certain composite fibered media. Networks and Heterogeneous Media, 2020, 15 (1) : 125-142. doi: 10.3934/nhm.2020006 [19] Sista Sivaji Ganesh, Vivek Tewary. Bloch wave approach to almost periodic homogenization and approximations of effective coefficients. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 1989-2024. doi: 10.3934/dcdsb.2021119 [20] Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343

2020 Impact Factor: 1.392