January & February  2009, 23(1&2): 299-313. doi: 10.3934/dcds.2009.23.299

On global controllability of 2-D Burgers equation

1. 

Department of Mathematics, Colorado State University,101 Weber Building, Fort Colins, CO 80523-1784, United States

2. 

Laboratoire de Mathématiques de Versailles, Université de Versailles - St. Quentin, 45 Avenue des Etats Unis, 78035 Versailles, France

Received  May 2007 Revised  February 2008 Published  September 2008

We study the question of global controllability for the two-dimensional Burgers equation when the control acts on a part $\Gamma_{1}$ of the boundary $\Gamma$. We prove global controllability when $\Gamma_{1}$ is the whole boundary or in a specific geometrical situation when $\Gamma_{0}=\Gamma \setminus \Gamma_{1}$ is contained in a parallel to the first bisector line. We also show with a counterexample that $\Gamma_{1}$ cannot be taken any part of the boundary.
Citation: Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299
[1]

T. Tachim Medjo, Louis Tcheugoue Tebou. Robust control problems in fluid flows. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 437-463. doi: 10.3934/dcds.2005.12.437

[2]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[3]

Mohamed Ouzahra. Controllability of the semilinear wave equation governed by a multiplicative control. Evolution Equations & Control Theory, 2019, 8 (4) : 669-686. doi: 10.3934/eect.2019039

[4]

Diogo Poças, Bartosz Protas. Transient growth in stochastic Burgers flows. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2371-2391. doi: 10.3934/dcdsb.2018052

[5]

Chun-Hsiung Hsia, Xiaoming Wang. On a Burgers' type equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1121-1139. doi: 10.3934/dcdsb.2006.6.1121

[6]

Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201

[7]

R. H.W. Hoppe, William G. Litvinov. Problems on electrorheological fluid flows. Communications on Pure & Applied Analysis, 2004, 3 (4) : 809-848. doi: 10.3934/cpaa.2004.3.809

[8]

Panagiotis Stinis. A hybrid method for the inviscid Burgers equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 793-799. doi: 10.3934/dcds.2003.9.793

[9]

Scott W. Hansen, Andrei A. Lyashenko. Exact controllability of a beam in an incompressible inviscid fluid. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 59-78. doi: 10.3934/dcds.1997.3.59

[10]

Manuel González-Burgos, Sergio Guerrero, Jean Pierre Puel. Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Communications on Pure & Applied Analysis, 2009, 8 (1) : 311-333. doi: 10.3934/cpaa.2009.8.311

[11]

Ezzeddine Zahrouni. On the Lyapunov functions for the solutions of the generalized Burgers equation. Communications on Pure & Applied Analysis, 2003, 2 (3) : 391-410. doi: 10.3934/cpaa.2003.2.391

[12]

Jong Uhn Kim. On the stochastic Burgers equation with a polynomial nonlinearity in the real line. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 835-866. doi: 10.3934/dcdsb.2006.6.835

[13]

Alexandre Boritchev. Decaying turbulence for the fractional subcritical Burgers equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2229-2249. doi: 10.3934/dcds.2018092

[14]

Naoki Fujino, Mitsuru Yamazaki. Burgers' type equation with vanishing higher order. Communications on Pure & Applied Analysis, 2007, 6 (2) : 505-520. doi: 10.3934/cpaa.2007.6.505

[15]

Jean-François Rault. A bifurcation for a generalized Burgers' equation in dimension one. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 683-706. doi: 10.3934/dcdss.2012.5.683

[16]

Tianliang Yang, J. M. McDonough. Solution filtering technique for solving Burgers' equation. Conference Publications, 2003, 2003 (Special) : 951-959. doi: 10.3934/proc.2003.2003.951

[17]

Chi Hin Chan, Magdalena Czubak, Luis Silvestre. Eventual regularization of the slightly supercritical fractional Burgers equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 847-861. doi: 10.3934/dcds.2010.27.847

[18]

Engu Satynarayana, Manas R. Sahoo, Manasa M. Higher order asymptotic for Burgers equation and Adhesion model. Communications on Pure & Applied Analysis, 2017, 16 (1) : 253-272. doi: 10.3934/cpaa.2017012

[19]

Klaus-Jochen Engel, Marjeta Kramar Fijavž, Rainer Nagel, Eszter Sikolya. Vertex control of flows in networks. Networks & Heterogeneous Media, 2008, 3 (4) : 709-722. doi: 10.3934/nhm.2008.3.709

[20]

Evgenii S. Baranovskii. Steady flows of an Oldroyd fluid with threshold slip. Communications on Pure & Applied Analysis, 2019, 18 (2) : 735-750. doi: 10.3934/cpaa.2019036

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]