• Previous Article
    Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters
  • DCDS Home
  • This Issue
  • Next Article
    The initial-boundary value problem on a strip for the equation of time-like extremal surfaces
February  2009, 23(1&2): 399-414. doi: 10.3934/dcds.2009.23.399

A spectral approach to the indirect boundary control of a system of weakly coupled wave equations


Department of Mathematics and Statistics, University of Minnesota, Duluth, MN 55812-2496, United States


Institut de Recherche Mathématique Avancée, Université Louis Pasteur de Strasbourg, 7 rue René-Descartes, 67084 Strasbourg

Received  December 2007 Revised  August 2008 Published  September 2008

In this paper, we study the exact controllability of a system of twoweakly coupled one-dimensional wave equations with the control actedon only one equation. Using the non harmonic analysis, we establishthe weak observability inequalities, which depend on the ratio ofthe wave propagation speeds. The obtained results are optimal.
Citation: Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control & Related Fields, 2014, 4 (4) : 521-554. doi: 10.3934/mcrf.2014.4.521


Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations & Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014


Ali Wehbe, Marwa Koumaiha, Layla Toufaily. Boundary observability and exact controllability of strongly coupled wave equations. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021091


S. S. Krigman. Exact boundary controllability of Maxwell's equations with weak conductivity in the heterogeneous medium inside a general domain. Conference Publications, 2007, 2007 (Special) : 590-601. doi: 10.3934/proc.2007.2007.590


Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete & Continuous Dynamical Systems, 2010, 28 (1) : 243-257. doi: 10.3934/dcds.2010.28.243


C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems & Imaging, 2007, 1 (3) : 457-479. doi: 10.3934/ipi.2007.1.457


Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485


Francisco J. Vielma leal, Ademir Pastor. Two simple criterion to obtain exact controllability and stabilization of a linear family of dispersive PDE's on a periodic domain. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021062


Belhassen Dehman, Jean-Pierre Raymond. Exact controllability for the Lamé system. Mathematical Control & Related Fields, 2015, 5 (4) : 743-760. doi: 10.3934/mcrf.2015.5.743


Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037


Mohammed Aassila. Exact boundary controllability of a coupled system. Discrete & Continuous Dynamical Systems, 2000, 6 (3) : 665-672. doi: 10.3934/dcds.2000.6.665


Daniele Cassani, Bernhard Ruf, Cristina Tarsi. On the capacity approach to non-attainability of Hardy's inequality in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 245-250. doi: 10.3934/dcdss.2019017


Gang Cai, Yekini Shehu, Olaniyi S. Iyiola. Inertial Tseng's extragradient method for solving variational inequality problems of pseudo-monotone and non-Lipschitz operators. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021095


Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021009


Palle E. T. Jorgensen and Steen Pedersen. Orthogonal harmonic analysis of fractal measures. Electronic Research Announcements, 1998, 4: 35-42.


Felipe Riquelme. Ruelle's inequality in negative curvature. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 2809-2825. doi: 10.3934/dcds.2018119


S. S. Dragomir, C. E. M. Pearce. Jensen's inequality for quasiconvex functions. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 279-291. doi: 10.3934/naco.2012.2.279


Scott W. Hansen, Andrei A. Lyashenko. Exact controllability of a beam in an incompressible inviscid fluid. Discrete & Continuous Dynamical Systems, 1997, 3 (1) : 59-78. doi: 10.3934/dcds.1997.3.59


Tatsien Li, Zhiqiang Wang. A note on the exact controllability for nonautonomous hyperbolic systems. Communications on Pure & Applied Analysis, 2007, 6 (1) : 229-235. doi: 10.3934/cpaa.2007.6.229


José R. Quintero, Alex M. Montes. On the exact controllability and the stabilization for the Benney-Luke equation. Mathematical Control & Related Fields, 2020, 10 (2) : 275-304. doi: 10.3934/mcrf.2019039

2020 Impact Factor: 1.392


  • PDF downloads (118)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]