January & February  2009, 23(1&2): 495-520. doi: 10.3934/dcds.2009.23.495

Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence

1. 

17-26 Iwasaki, Hodogaya, Yokohama 240-0015

2. 

Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong

3. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Received  December 2007 Revised  May 2008 Published  September 2008

The exterior problem arising from the study of a flow past anobstacle is one of the most classical and important subjects in gasdynamics and fluid mechanics. The point of this problem is to assignthe bulk velocity at infinity, which is not a trivial driving forceon the flow so that some non-trivial solution profiles persist. Inthis paper, we consider the exterior problem for the Boltzmannequation when the Mach number of the far field equilibrium state issmall. The result here generalizes the previous one by Ukai-Asano onthe same problem to more general boundary conditions by cruciallyusing the velocity average argument.
Citation: Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495
[1]

Seiji Ukai, Tong Yang, Huijiang Zhao. Exterior Problem of Boltzmann Equation with Temperature Difference. Communications on Pure & Applied Analysis, 2009, 8 (1) : 473-491. doi: 10.3934/cpaa.2009.8.473

[2]

Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic & Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35

[3]

Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83

[4]

Peng Chen, Xiaochun Liu. Positive solutions for Choquard equation in exterior domains. Communications on Pure & Applied Analysis, 2021, 20 (6) : 2237-2256. doi: 10.3934/cpaa.2021065

[5]

Alberto Boscaggin, Maurizio Garrione. Positive solutions to indefinite Neumann problems when the weight has positive average. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5231-5244. doi: 10.3934/dcds.2016028

[6]

Renjun Duan, Shota Sakamoto. Solution to the Boltzmann equation in velocity-weighted Chemin-Lerner type spaces. Kinetic & Related Models, 2018, 11 (6) : 1301-1331. doi: 10.3934/krm.2018051

[7]

Joseph Iaia. Existence of infinitely many solutions for semilinear problems on exterior domains. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4269-4284. doi: 10.3934/cpaa.2020193

[8]

Riccardo Molle, Donato Passaseo. On the behaviour of the solutions for a class of nonlinear elliptic problems in exterior domains. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 445-454. doi: 10.3934/dcds.1998.4.445

[9]

Kazuhiro Ishige, Michinori Ishiwata. Global solutions for a semilinear heat equation in the exterior domain of a compact set. Discrete & Continuous Dynamical Systems, 2012, 32 (3) : 847-865. doi: 10.3934/dcds.2012.32.847

[10]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[11]

Yong Liu, Jing Tian, Xuelin Yong. On the even solutions of the Toda system: a degree argument approach. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021075

[12]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic & Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673

[13]

Seiji Ukai. Time-periodic solutions of the Boltzmann equation. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 579-596. doi: 10.3934/dcds.2006.14.579

[14]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Bounded solutions of the Boltzmann equation in the whole space. Kinetic & Related Models, 2011, 4 (1) : 17-40. doi: 10.3934/krm.2011.4.17

[15]

Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801

[16]

Juhi Jang, Ning Jiang. Acoustic limit of the Boltzmann equation: Classical solutions. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 869-882. doi: 10.3934/dcds.2009.25.869

[17]

Thomas Carty. Grossly determined solutions for a Boltzmann-like equation. Kinetic & Related Models, 2017, 10 (4) : 957-976. doi: 10.3934/krm.2017038

[18]

Hongjun Yu. Global classical solutions to the Boltzmann equation with external force. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1647-1668. doi: 10.3934/cpaa.2009.8.1647

[19]

Davide Guidetti. Convergence to a stationary state of solutions to inverse problems of parabolic type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 711-722. doi: 10.3934/dcdss.2013.6.711

[20]

Mario Pulvirenti, Sergio Simonella, Anton Trushechkin. Microscopic solutions of the Boltzmann-Enskog equation in the series representation. Kinetic & Related Models, 2018, 11 (4) : 911-931. doi: 10.3934/krm.2018036

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]