
Previous Article
Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves
 DCDS Home
 This Issue

Next Article
Absorption of characteristics by sonic curve of the twodimensional Euler equations
Time discrete wave equations: Boundary observability and control
1.  Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100190 
2.  School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China 
3.  Basque Center for Applied Mathematics (BCAM), Gran Via 35, 48009 Bilbao, Spain 
[1] 
Patrick Martinez, Judith Vancostenoble. Exact controllability in "arbitrarily short time" of the semilinear wave equation. Discrete & Continuous Dynamical Systems  A, 2003, 9 (4) : 901924. doi: 10.3934/dcds.2003.9.901 
[2] 
Tianliang Yang, J. M. McDonough. Solution filtering technique for solving Burgers' equation. Conference Publications, 2003, 2003 (Special) : 951959. doi: 10.3934/proc.2003.2003.951 
[3] 
Arnaud Heibig, Mohand Moussaoui. Exact controllability of the wave equation for domains with slits and for mixed boundary conditions. Discrete & Continuous Dynamical Systems  A, 1996, 2 (3) : 367386. doi: 10.3934/dcds.1996.2.367 
[4] 
Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations & Control Theory, 2018, 7 (4) : 545570. doi: 10.3934/eect.2018026 
[5] 
Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations & Control Theory, 2015, 4 (3) : 325346. doi: 10.3934/eect.2015.4.325 
[6] 
Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete & Continuous Dynamical Systems  A, 2010, 28 (1) : 243257. doi: 10.3934/dcds.2010.28.243 
[7] 
Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations & Control Theory, 2018, 7 (3) : 403415. doi: 10.3934/eect.2018020 
[8] 
José R. Quintero, Alex M. Montes. On the exact controllability and the stabilization for the BenneyLuke equation. Mathematical Control & Related Fields, 2019, 0 (0) : 00. doi: 10.3934/mcrf.2019039 
[9] 
Irena Lasiecka, Roberto Triggiani. Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument. Conference Publications, 2005, 2005 (Special) : 556565. doi: 10.3934/proc.2005.2005.556 
[10] 
Peng Gao. Global exact controllability to the trajectories of the KuramotoSivashinsky equation. Evolution Equations & Control Theory, 2019, 0 (0) : 111. doi: 10.3934/eect.2020002 
[11] 
Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305320. doi: 10.3934/mcrf.2015.5.305 
[12] 
Mohamed Ouzahra. Controllability of the semilinear wave equation governed by a multiplicative control. Evolution Equations & Control Theory, 2019, 8 (4) : 669686. doi: 10.3934/eect.2019039 
[13] 
Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control & Related Fields, 2014, 4 (4) : 521554. doi: 10.3934/mcrf.2014.4.521 
[14] 
Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 829854. doi: 10.3934/mcrf.2018037 
[15] 
Belhassen Dehman, JeanPierre Raymond. Exact controllability for the Lamé system. Mathematical Control & Related Fields, 2015, 5 (4) : 743760. doi: 10.3934/mcrf.2015.5.743 
[16] 
Orazio Muscato, Wolfgang Wagner. A stochastic algorithm without time discretization error for the Wigner equation. Kinetic & Related Models, 2019, 12 (1) : 5977. doi: 10.3934/krm.2019003 
[17] 
Olivier Goubet, Ezzeddine Zahrouni. On a time discretization of a weakly damped forced nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (6) : 14291442. doi: 10.3934/cpaa.2008.7.1429 
[18] 
NingAn Lai, Jinglei Zhao. Potential well and exact boundary controllability for radial semilinear wave equations on Schwarzschild spacetime. Communications on Pure & Applied Analysis, 2014, 13 (3) : 13171325. doi: 10.3934/cpaa.2014.13.1317 
[19] 
Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143150. doi: 10.3934/proc.2009.2009.143 
[20] 
Henri Schurz. Analysis and discretization of semilinear stochastic wave equations with cubic nonlinearity and additive spacetime noise. Discrete & Continuous Dynamical Systems  S, 2008, 1 (2) : 353363. doi: 10.3934/dcdss.2008.1.353 
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]