February  2009, 23(1&2): 605-616. doi: 10.3934/dcds.2009.23.605

Absorption of characteristics by sonic curve of the two-dimensional Euler equations

1. 

Department of Mathematics, The Pennsylvania State University, PA 16802, United States

Received  January 2008 Revised  April 2008 Published  September 2008

We explore the reflection off a sonic curve and the domain of determinacy,via the method of characteristics, of self-similar solutions to thetwo dimensional isentropic Euler system through severalexamples with axially symmetric initial data. We find thatcharacteristics in some cases can be completely absorbed by the sonic curveso that the characteristics vanish tangentially into the sonicboundary, exemplifying a classical scenario of the Keldysh type;however, the characteristics can wraparound the closed sonic curve unboundedly many times, so thatthe domain of determinacy of the hyperbolic characteristic boundaryvalue problem or the Goursat problem exhibit layered annulus structures.As the number of layers increases, the layers become thinner, and thesolution at an interior point of the domain depends eventually on theentire boundary data.
Citation: Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605
[1]

Tung Chang, Gui-Qiang Chen, Shuli Yang. On the 2-D Riemann problem for the compressible Euler equations I. Interaction of shocks and rarefaction waves. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 555-584. doi: 10.3934/dcds.1995.1.555

[2]

Tung Chang, Gui-Qiang Chen, Shuli Yang. On the 2-D Riemann problem for the compressible Euler equations II. Interaction of contact discontinuities. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 419-430. doi: 10.3934/dcds.2000.6.419

[3]

Jean-françois Coulombel, Paolo Secchi. Uniqueness of 2-D compressible vortex sheets. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1439-1450. doi: 10.3934/cpaa.2009.8.1439

[4]

Yanbo Hu, Tong Li. The regularity of a degenerate Goursat problem for the 2-D isothermal Euler equations. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3317-3336. doi: 10.3934/cpaa.2019149

[5]

Xiaojing Xu. Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1333-1347. doi: 10.3934/dcds.2009.25.1333

[6]

Zhixian Yu, Rong Yuan, Shaohua Gan. Novel entire solutions in a nonlocal 2-D discrete periodic media for bistable dynamics. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4815-4838. doi: 10.3934/dcdsb.2020314

[7]

Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917

[8]

Gianmarco Manzini, Annamaria Mazzia. A virtual element generalization on polygonal meshes of the Scott-Vogelius finite element method for the 2-D Stokes problem. Journal of Computational Dynamics, 2022, 9 (2) : 207-238. doi: 10.3934/jcd.2021020

[9]

Tian Ma, Shouhong Wang. Global structure of 2-D incompressible flows. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 431-445. doi: 10.3934/dcds.2001.7.431

[10]

Nusret Balci, Ciprian Foias, M. S Jolly, Ricardo Rosa. On universal relations in 2-D turbulence. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1327-1351. doi: 10.3934/dcds.2010.27.1327

[11]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[12]

Lihui Guo, Wancheng Sheng, Tong Zhang. The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system$^*$. Communications on Pure and Applied Analysis, 2010, 9 (2) : 431-458. doi: 10.3934/cpaa.2010.9.431

[13]

Meng Wang, Wendong Wang, Zhifei Zhang. On the uniqueness of weak solution for the 2-D Ericksen--Leslie system. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 919-941. doi: 10.3934/dcdsb.2016.21.919

[14]

Thomas Y. Hou, Danping Yang, Hongyu Ran. Multiscale analysis in Lagrangian formulation for the 2-D incompressible Euler equation. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1153-1186. doi: 10.3934/dcds.2005.13.1153

[15]

H. T. Banks, R.C. Smith. Feedback control of noise in a 2-D nonlinear structural acoustics model. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 119-149. doi: 10.3934/dcds.1995.1.119

[16]

Quan Wang, Hong Luo, Tian Ma. Boundary layer separation of 2-D incompressible Dirichlet flows. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 675-682. doi: 10.3934/dcdsb.2015.20.675

[17]

Huicheng Yin, Lin Zhang. The global stability of 2-D viscous axisymmetric circulatory flows. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5065-5083. doi: 10.3934/dcds.2017219

[18]

Dongbing Zha. Remarks on nonlinear elastic waves in the radial symmetry in 2-D. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 4051-4062. doi: 10.3934/dcds.2016.36.4051

[19]

Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237

[20]

Roberto Triggiani. Stability enhancement of a 2-D linear Navier-Stokes channel flow by a 2-D, wall-normal boundary controller. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 279-314. doi: 10.3934/dcdsb.2007.8.279

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]