-
Previous Article
Multidimensional periodic traveling waves in infinite cylinders
- DCDS Home
- This Issue
-
Next Article
Shell structure as solution to a free boundary problem from block copolymer morphology
Existence theorems for periodic Markov process and stochastic functional differential equations
1. | Yangtze center of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China, China |
2. | College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, China |
[1] |
Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control and Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401 |
[2] |
Min Zhu, Panpan Ren, Junping Li. Exponential stability of solutions for retarded stochastic differential equations without dissipativity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2923-2938. doi: 10.3934/dcdsb.2017157 |
[3] |
Yuncheng You. Pullback uniform dissipativity of stochastic reversible Schnackenberg equations. Conference Publications, 2015, 2015 (special) : 1134-1142. doi: 10.3934/proc.2015.1134 |
[4] |
Arno Berger. Counting uniformly attracting solutions of nonautonomous differential equations. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 15-25. doi: 10.3934/dcdss.2008.1.15 |
[5] |
Artem Dudko. Computability of the Julia set. Nonrecurrent critical orbits. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2751-2778. doi: 10.3934/dcds.2014.34.2751 |
[6] |
Yayun Zheng, Xu Sun. Governing equations for Probability densities of stochastic differential equations with discrete time delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3615-3628. doi: 10.3934/dcdsb.2017182 |
[7] |
Pingping Niu, Shuai Lu, Jin Cheng. On periodic parameter identification in stochastic differential equations. Inverse Problems and Imaging, 2019, 13 (3) : 513-543. doi: 10.3934/ipi.2019025 |
[8] |
Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121 |
[9] |
Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061 |
[10] |
Hermann Brunner. The numerical solution of weakly singular Volterra functional integro-differential equations with variable delays. Communications on Pure and Applied Analysis, 2006, 5 (2) : 261-276. doi: 10.3934/cpaa.2006.5.261 |
[11] |
Vladimir Kazakov. Sampling - reconstruction procedure with jitter of markov continuous processes formed by stochastic differential equations of the first order. Conference Publications, 2009, 2009 (Special) : 433-441. doi: 10.3934/proc.2009.2009.433 |
[12] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[13] |
Tomás Caraballo, Carlos Ogouyandjou, Fulbert Kuessi Allognissode, Mamadou Abdoul Diop. Existence and exponential stability for neutral stochastic integro–differential equations with impulses driven by a Rosenblatt process. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 507-528. doi: 10.3934/dcdsb.2019251 |
[14] |
Yong Li, Zhenxin Liu, Wenhe Wang. Almost periodic solutions and stable solutions for stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5927-5944. doi: 10.3934/dcdsb.2019113 |
[15] |
Kai Liu. Stationary solutions of neutral stochastic partial differential equations with delays in the highest-order derivatives. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3915-3934. doi: 10.3934/dcdsb.2018117 |
[16] |
Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499 |
[17] |
Hans-Otto Walther. On solution manifolds of differential systems with discrete state-dependent delays. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022108 |
[18] |
Hui Liang, Hermann Brunner. Collocation methods for differential equations with piecewise linear delays. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1839-1857. doi: 10.3934/cpaa.2012.11.1839 |
[19] |
Mohamed Ali Hammami, Lassaad Mchiri, Sana Netchaoui, Stefanie Sonner. Pullback exponential attractors for differential equations with variable delays. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 301-319. doi: 10.3934/dcdsb.2019183 |
[20] |
Tomás Caraballo, Gábor Kiss. Attractors for differential equations with multiple variable delays. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1365-1374. doi: 10.3934/dcds.2013.33.1365 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]