November  2009, 24(4): 1147-1165. doi: 10.3934/dcds.2009.24.1147

Damped wave equations with fast growing dissipative nonlinearities

1. 

Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Caixa postal 668, 13560-970 São Carlos, São Paulo, Brazil

2. 

Institute of Mathematics, Silesian University, 40-007 Katowice, Poland, Poland

Received  July 2008 Revised  January 2009 Published  May 2009

Let $a>0$, $\Omega\subset \R^N$ be a bounded smooth domain and $-A$ denotes the Laplace operator with Dirichlet boundary condition in $L^2(\Omega)$. We study the damped wave problem

utt$ + a u_t + A u = f(u), \ t>0, $
$u(0)=u_0\in H^1_0(\Omega), \ \ u_t(0)=v_0\in L^2(\Omega),$

where $f:\R\to\R$ is a continuously differentiable function satisfying the growth condition $|f(s)-f(t)|\leq C|s-t|(1+|s|^{\rho-1}+|t|^{\rho-1})$, $1<\rho<\frac{N+2}{N-2}$, ($N\geq 3$), and the dissipativeness condition $\lim$sup$_|s|\to\infty \frac{f(s)}{s}< \lambda_1$ with $\lambda_1$ being the first eigenvalue of $A$. We construct the global weak solutions of this problem as the limits as $\eta\to0^+$ of the solutions of wave equations involving the strong damping term $2\eta A^{1/2} u$ with $\eta>0$. We define a subclass $\mathcal LS\subset C([0,\infty),L^2(\Omega)\times H^{-1}(\Omega))\cap L^\infty([0,\infty),H^1_0(\Omega)\times L^2(\Omega))$ of the 'limit' solutions such that through each initial condition from $H^1_0(\Omega)\times L^2(\Omega)$ passes at least one solution of the class $\mathcal LS$. We show that the class $\mathcal LS$ has bounded dissipativeness property in $H^1_0(\Omega)\times L^2(\Omega)$ and we construct a closed bounded invariant subset A of $H^1_0(\Omega)\times L^2(\Omega)$, which is weakly compact in $H^1_0(\Omega)\times L^2(\Omega)$ and compact in $H^s_{\I}(\Omega)\times H^{s-1}(\Omega)$, $s\in[0,1)$. Furthermore A attracts bounded subsets of $H^1_0(\Omega)\times L^2(\Omega)$ in $H^s_\{I\}(\Omega)\times H^{s-1}(\Omega)$, for each $s\in[0,1)$. For $N=3,4,5$ we also prove a local uniqueness result for the case of smooth initial data.

Citation: Alexandre Nolasco de Carvalho, Jan W. Cholewa, Tomasz Dlotko. Damped wave equations with fast growing dissipative nonlinearities. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1147-1165. doi: 10.3934/dcds.2009.24.1147
[1]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[2]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[3]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[4]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[5]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[6]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[7]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[8]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[9]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[10]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[11]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[12]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[13]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[14]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[15]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[16]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[17]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[18]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[19]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[20]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (85)
  • HTML views (0)
  • Cited by (19)

[Back to Top]