# American Institute of Mathematical Sciences

November  2009, 24(4): 1215-1224. doi: 10.3934/dcds.2009.24.1215

## On the global attractor of delay differential equations with unimodal feedback

 1 Departamento de Matemática Aplicada II, E.T.S.E. Telecomunicación, Universidade de Vigo, Campus Marcosende, 36310 Vigo, Spain 2 Analysis and Stochastics Research Group, Hungarian Academy of Sciences, Bolyai Institute, University of Szeged, H-6720 Szeged, Aradi vértanúk tere 1.

Received  February 2008 Revised  October 2008 Published  May 2009

We give bounds for the global attractor of the delay differential equation $\dot x(t)=-\mu x(t)+f(x(t-\tau))$, where $f$ is unimodal and has negative Schwarzian derivative. If $f$ and $\mu$ satisfy certain condition, then, regardless of the delay, all solutions enter the domain where $f$ is monotone decreasing and the powerful results for delayed monotone feedback can be applied to describe the asymptotic behaviour of solutions. In this situation we determine the sharpest interval that contains the global attractor for any delay. In the absence of that condition, improving earlier results, we show that if the delay is sufficiently small, then all solutions enter the domain where $f'$ is negative. Our theorems then are illustrated by numerical examples using Nicholson's blowflies equation and the Mackey-Glass equation.
Citation: Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215
 [1] Tarik Mohammed Touaoula. Global stability for a class of functional differential equations (Application to Nicholson's blowflies and Mackey-Glass models). Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4391-4419. doi: 10.3934/dcds.2018191 [2] Ahmed Elhassanein. Complex dynamics of a forced discretized version of the Mackey-Glass delay differential equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 93-105. doi: 10.3934/dcdsb.2015.20.93 [3] Xiaoyuan Chang, Junping Shi. Bistable and oscillatory dynamics of Nicholson's blowflies equation with Allee effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021242 [4] Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369 [5] Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689 [6] Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5321-5335. doi: 10.3934/dcdsb.2020345 [7] Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6207-6228. doi: 10.3934/dcdsb.2021015 [8] Bernold Fiedler, Isabelle Schneider. Stabilized rapid oscillations in a delay equation: Feedback control by a small resonant delay. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1145-1185. doi: 10.3934/dcdss.2020068 [9] Eduardo Liz, Manuel Pinto, Gonzalo Robledo, Sergei Trofimchuk, Victor Tkachenko. Wright type delay differential equations with negative Schwarzian. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 309-321. doi: 10.3934/dcds.2003.9.309 [10] Chuangxia Huang, Hua Zhang, Lihong Huang. Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3337-3349. doi: 10.3934/cpaa.2019150 [11] Karel Hasík, Jana Kopfová, Petra Nábělková, Sergei Trofimchuk. On pushed wavefronts of monostable equation with unimodal delayed reaction. Discrete & Continuous Dynamical Systems, 2021, 41 (12) : 5979-6000. doi: 10.3934/dcds.2021103 [12] István Győri, Yukihiko Nakata, Gergely Röst. Unbounded and blow-up solutions for a delay logistic equation with positive feedback. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2845-2854. doi: 10.3934/cpaa.2018134 [13] Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 [14] P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220 [15] Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 [16] Milena Stanislavova. On the global attractor for the damped Benjamin-Bona-Mahony equation. Conference Publications, 2005, 2005 (Special) : 824-832. doi: 10.3934/proc.2005.2005.824 [17] Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060 [18] Zhijian Yang, Zhiming Liu. Global attractor for a strongly damped wave equation with fully supercritical nonlinearities. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 2181-2205. doi: 10.3934/dcds.2017094 [19] Azer Khanmamedov, Sema Simsek. Existence of the global attractor for the plate equation with nonlocal nonlinearity in $\mathbb{R} ^{n}$. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 151-172. doi: 10.3934/dcdsb.2016.21.151 [20] D. Hilhorst, L. A. Peletier, A. I. Rotariu, G. Sivashinsky. Global attractor and inertial sets for a nonlocal Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 557-580. doi: 10.3934/dcds.2004.10.557

2020 Impact Factor: 1.392