November  2009, 24(4): 1335-1343. doi: 10.3934/dcds.2009.24.1335

Improved condition for stabilization of controlled inverted pendulum under stochastic perturbations

1. 

Department of Higher Mathematics, Donetsk State University of Management, Chelyuskintsev str., 163-a, Donetsk, 83015

Received  September 2008 Revised  December 2008 Published  May 2009

Known sufficient condition for stabilization of the controlled inverted pendulum under stochastic perturbations is improved via V.Kolmanovskii and L.Shaikhet general method of Lyapunov functionals construction.
Citation: Leonid Shaikhet. Improved condition for stabilization of controlled inverted pendulum under stochastic perturbations. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1335-1343. doi: 10.3934/dcds.2009.24.1335
[1]

Mari Paz Calvo, Jesus M. Sanz-Serna. Carrying an inverted pendulum on a bumpy road. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 429-438. doi: 10.3934/dcdsb.2010.14.429

[2]

Roman Srzednicki. On periodic solutions in the Whitney's inverted pendulum problem. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2127-2141. doi: 10.3934/dcdss.2019137

[3]

Ivan Polekhin. On motions without falling of an inverted pendulum with dry friction. Journal of Geometric Mechanics, 2018, 10 (4) : 411-417. doi: 10.3934/jgm.2018015

[4]

Hjörtur Björnsson, Sigurdur Hafstein, Peter Giesl, Enrico Scalas, Skuli Gudmundsson. Computation of the stochastic basin of attraction by rigorous construction of a Lyapunov function. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4247-4269. doi: 10.3934/dcdsb.2019080

[5]

Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure and Applied Analysis, 2014, 13 (5) : 2095-2113. doi: 10.3934/cpaa.2014.13.2095

[6]

Yubai Liu, Xueshan Gao, Fuquan Dai. Implementation of Mamdami fuzzy control on a multi-DOF two-wheel inverted pendulum robot. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1251-1266. doi: 10.3934/dcdss.2015.8.1251

[7]

Paweł Góra, Abraham Boyarsky. Stochastic perturbations and Ulam's method for W-shaped maps. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1937-1944. doi: 10.3934/dcds.2013.33.1937

[8]

Guillaume Bal, Olivier Pinaud, Lenya Ryzhik. On the stability of some imaging functionals. Inverse Problems and Imaging, 2016, 10 (3) : 585-616. doi: 10.3934/ipi.2016013

[9]

Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki. Lyapunov functionals for multistrain models with infinite delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 507-536. doi: 10.3934/dcdsb.2017025

[10]

Chao Liang, Wenxiang Sun, Jiagang Yang. Some results on perturbations of Lyapunov exponents. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4287-4305. doi: 10.3934/dcds.2012.32.4287

[11]

Victor Berdichevsky. Distribution of minimum values of stochastic functionals. Networks and Heterogeneous Media, 2008, 3 (3) : 437-460. doi: 10.3934/nhm.2008.3.437

[12]

Sergio Grillo, Jerrold E. Marsden, Sujit Nair. Lyapunov constraints and global asymptotic stabilization. Journal of Geometric Mechanics, 2011, 3 (2) : 145-196. doi: 10.3934/jgm.2011.3.145

[13]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[14]

Tomoharu Suda. Construction of Lyapunov functions using Helmholtz–Hodge decomposition. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2437-2454. doi: 10.3934/dcds.2019103

[15]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6027-6046. doi: 10.3934/dcdsb.2020378

[16]

Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki. Lyapunov functionals for virus-immune models with infinite delay. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3093-3114. doi: 10.3934/dcdsb.2015.20.3093

[17]

Pierre Guiraud, Etienne Tanré. Stability of synchronization under stochastic perturbations in leaky integrate and fire neural networks of finite size. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5183-5201. doi: 10.3934/dcdsb.2019056

[18]

Leonid Shaikhet. Stability of delay differential equations with fading stochastic perturbations of the type of white noise and poisson's jumps. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3651-3657. doi: 10.3934/dcdsb.2020077

[19]

Guoshan Zhang, Peizhao Yu. Lyapunov method for stability of descriptor second-order and high-order systems. Journal of Industrial and Management Optimization, 2018, 14 (2) : 673-686. doi: 10.3934/jimo.2017068

[20]

Luigi Ambrosio, Camillo Brena. Stability of a class of action functionals depending on convex functions. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022055

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]