November  2009, 24(4): 1345-1363. doi: 10.3934/dcds.2009.24.1345

Stability of invariant measures

1. 

Department of Mathematics, Bijenička 30, Zagreb, Croatia

Received  January 2008 Revised  December 2008 Published  May 2009

We generalize various notions of stability of invariant sets of dynamical systems to invariant measures, by defining a topology on the set of measures. The defined topology is similar, but not topologically equivalent to weak* topology, and it also differs from topologies induced by the Riesz Representation Theorem. It turns out that the constructed topology is a solution of a limit case of a $p$-optimal transport problem, for $p=\infty$.
Citation: Siniša Slijepčević. Stability of invariant measures. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1345-1363. doi: 10.3934/dcds.2009.24.1345
[1]

Robert J. McCann. A glimpse into the differential topology and geometry of optimal transport. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1605-1621. doi: 10.3934/dcds.2014.34.1605

[2]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic and Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673

[3]

S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial and Management Optimization, 2008, 4 (1) : 155-165. doi: 10.3934/jimo.2008.4.155

[4]

Maria Colombo, Antonio De Rosa, Andrea Marchese, Paul Pegon, Antoine Prouff. Stability of optimal traffic plans in the irrigation problem. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1647-1667. doi: 10.3934/dcds.2021167

[5]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1987-2020. doi: 10.3934/cpaa.2021055

[6]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the stability problem for the Boussinesq equations in weak-$L^p$ spaces. Communications on Pure and Applied Analysis, 2010, 9 (3) : 667-684. doi: 10.3934/cpaa.2010.9.667

[7]

Xiangfeng Yang. Stability in measure for uncertain heat equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6533-6540. doi: 10.3934/dcdsb.2019152

[8]

Christian Pötzsche, Stefan Siegmund, Fabian Wirth. A spectral characterization of exponential stability for linear time-invariant systems on time scales. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1223-1241. doi: 10.3934/dcds.2003.9.1223

[9]

Yanfang Li, Zhuangyi Liu, Yang Wang. Weak stability of a laminated beam. Mathematical Control and Related Fields, 2018, 8 (3&4) : 789-808. doi: 10.3934/mcrf.2018035

[10]

Guillaume Bal, Alexandre Jollivet. Stability estimates in stationary inverse transport. Inverse Problems and Imaging, 2008, 2 (4) : 427-454. doi: 10.3934/ipi.2008.2.427

[11]

Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2629-2653. doi: 10.3934/dcds.2018111

[12]

Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219

[13]

Guillaume Bal, Alexandre Jollivet. Generalized stability estimates in inverse transport theory. Inverse Problems and Imaging, 2018, 12 (1) : 59-90. doi: 10.3934/ipi.2018003

[14]

Jason S. Howell, Irena Lasiecka, Justin T. Webster. Quasi-stability and exponential attractors for a non-gradient system---applications to piston-theoretic plates with internal damping. Evolution Equations and Control Theory, 2016, 5 (4) : 567-603. doi: 10.3934/eect.2016020

[15]

Bettina Klaus, Frédéric Payot. Paths to stability in the assignment problem. Journal of Dynamics and Games, 2015, 2 (3&4) : 257-287. doi: 10.3934/jdg.2015004

[16]

Sigurdur Freyr Hafstein. A constructive converse Lyapunov theorem on exponential stability. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 657-678. doi: 10.3934/dcds.2004.10.657

[17]

Hichem Kasri, Amar Heminna. Exponential stability of a coupled system with Wentzell conditions. Evolution Equations and Control Theory, 2016, 5 (2) : 235-250. doi: 10.3934/eect.2016003

[18]

Litan Yan, Wenyi Pei, Zhenzhong Zhang. Exponential stability of SDEs driven by fBm with Markovian switching. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6467-6483. doi: 10.3934/dcds.2019280

[19]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[20]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]