-
Previous Article
On dynamical systems close to a product of $m$ rotations
- DCDS Home
- This Issue
-
Next Article
Hölder stability of diffeomorphisms
Quenched CLT for random toral automorphism
1. | Department of Physics, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854, United States |
2. | Dipartimento di Matematica, II Università di Roma (Tor Vergata), Via della Ricerca Scientifica, 00133 Roma |
3. | Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854, United States |
[1] |
Jean-Pierre Conze, Stéphane Le Borgne, Mikaël Roger. Central limit theorem for stationary products of toral automorphisms. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1597-1626. doi: 10.3934/dcds.2012.32.1597 |
[2] |
James Nolen. A central limit theorem for pulled fronts in a random medium. Networks and Heterogeneous Media, 2011, 6 (2) : 167-194. doi: 10.3934/nhm.2011.6.167 |
[3] |
Oliver Díaz-Espinosa, Rafael de la Llave. Renormalization and central limit theorem for critical dynamical systems with weak external noise. Journal of Modern Dynamics, 2007, 1 (3) : 477-543. doi: 10.3934/jmd.2007.1.477 |
[4] |
Shige Peng. Law of large numbers and central limit theorem under nonlinear expectations. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 4-. doi: 10.1186/s41546-019-0038-2 |
[5] |
Gary Froyland, Simon Lloyd, Anthony Quas. A semi-invertible Oseledets Theorem with applications to transfer operator cocycles. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 3835-3860. doi: 10.3934/dcds.2013.33.3835 |
[6] |
Yves Derriennic. Some aspects of recent works on limit theorems in ergodic theory with special emphasis on the "central limit theorem''. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 143-158. doi: 10.3934/dcds.2006.15.143 |
[7] |
Michael Björklund, Alexander Gorodnik. Central limit theorems in the geometry of numbers. Electronic Research Announcements, 2017, 24: 110-122. doi: 10.3934/era.2017.24.012 |
[8] |
Dieter Mayer, Tobias Mühlenbruch, Fredrik Strömberg. The transfer operator for the Hecke triangle groups. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2453-2484. doi: 10.3934/dcds.2012.32.2453 |
[9] |
Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665 |
[10] |
Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917 |
[11] |
Patricia Domínguez, Peter Makienko, Guillermo Sienra. Ruelle operator and transcendental entire maps. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 773-789. doi: 10.3934/dcds.2005.12.773 |
[12] |
Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022045 |
[13] |
Mathias Staudigl. A limit theorem for Markov decision processes. Journal of Dynamics and Games, 2014, 1 (4) : 639-659. doi: 10.3934/jdg.2014.1.639 |
[14] |
Christoph Bandt, Helena PeÑa. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198 |
[15] |
Yury Arlinskiĭ, Eduard Tsekanovskiĭ. Constant J-unitary factor and operator-valued transfer functions. Conference Publications, 2003, 2003 (Special) : 48-56. doi: 10.3934/proc.2003.2003.48 |
[16] |
Arnaud Debussche, Sylvain De Moor, Julien Vovelle. Diffusion limit for the radiative transfer equation perturbed by a Wiener process. Kinetic and Related Models, 2015, 8 (3) : 467-492. doi: 10.3934/krm.2015.8.467 |
[17] |
Betseygail Rand, Lorenzo Sadun. An approximation theorem for maps between tiling spaces. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 323-326. doi: 10.3934/dcds.2011.29.323 |
[18] |
Keisuke Hakuta, Hisayoshi Sato, Tsuyoshi Takagi. On tameness of Matsumoto-Imai central maps in three variables over the finite field $\mathbb F_2$. Advances in Mathematics of Communications, 2016, 10 (2) : 221-228. doi: 10.3934/amc.2016002 |
[19] |
Yiming Ding. Renormalization and $\alpha$-limit set for expanding Lorenz maps. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 979-999. doi: 10.3934/dcds.2011.29.979 |
[20] |
Bruce Kitchens, Michał Misiurewicz. Omega-limit sets for spiral maps. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 787-798. doi: 10.3934/dcds.2010.27.787 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]