-
Previous Article
Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment
- DCDS Home
- This Issue
-
Next Article
Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large data and vacuum
On the injectivity of the X-ray transform for Anosov thermostats
1. | Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge CB3 0WB, United Kingdom, United Kingdom |
[1] |
François Rouvière. X-ray transform on Damek-Ricci spaces. Inverse Problems and Imaging, 2010, 4 (4) : 713-720. doi: 10.3934/ipi.2010.4.713 |
[2] |
Aleksander Denisiuk. On range condition of the tensor x-ray transform in $ \mathbb R^n $. Inverse Problems and Imaging, 2020, 14 (3) : 423-435. doi: 10.3934/ipi.2020020 |
[3] |
Wenzhong Zhu, Huanlong Jiang, Erli Wang, Yani Hou, Lidong Xian, Joyati Debnath. X-ray image global enhancement algorithm in medical image classification. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1297-1309. doi: 10.3934/dcdss.2019089 |
[4] |
Silvia Allavena, Michele Piana, Federico Benvenuto, Anna Maria Massone. An interpolation/extrapolation approach to X-ray imaging of solar flares. Inverse Problems and Imaging, 2012, 6 (2) : 147-162. doi: 10.3934/ipi.2012.6.147 |
[5] |
Nuutti Hyvönen, Martti Kalke, Matti Lassas, Henri Setälä, Samuli Siltanen. Three-dimensional dental X-ray imaging by combination of panoramic and projection data. Inverse Problems and Imaging, 2010, 4 (2) : 257-271. doi: 10.3934/ipi.2010.4.257 |
[6] |
Arun K. Kulshreshth, Andreas Alpers, Gabor T. Herman, Erik Knudsen, Lajos Rodek, Henning F. Poulsen. A greedy method for reconstructing polycrystals from three-dimensional X-ray diffraction data. Inverse Problems and Imaging, 2009, 3 (1) : 69-85. doi: 10.3934/ipi.2009.3.69 |
[7] |
Zhenhua Zhao, Yining Zhu, Jiansheng Yang, Ming Jiang. Mumford-Shah-TV functional with application in X-ray interior tomography. Inverse Problems and Imaging, 2018, 12 (2) : 331-348. doi: 10.3934/ipi.2018015 |
[8] |
Jakob S. Jørgensen, Emil Y. Sidky, Per Christian Hansen, Xiaochuan Pan. Empirical average-case relation between undersampling and sparsity in X-ray CT. Inverse Problems and Imaging, 2015, 9 (2) : 431-446. doi: 10.3934/ipi.2015.9.431 |
[9] |
Weihao Shen, Wenbo Xu, Hongyang Zhang, Zexin Sun, Jianxiong Ma, Xinlong Ma, Shoujun Zhou, Shijie Guo, Yuanquan Wang. Automatic segmentation of the femur and tibia bones from X-ray images based on pure dilated residual U-Net. Inverse Problems and Imaging, 2021, 15 (6) : 1333-1346. doi: 10.3934/ipi.2020057 |
[10] |
Hiroshi Fujiwara, Kamran Sadiq, Alexandru Tamasan. Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc. Inverse Problems and Imaging, 2022, 16 (1) : 215-228. doi: 10.3934/ipi.2021047 |
[11] |
Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems and Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27 |
[12] |
Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801 |
[13] |
Georgi Grahovski, Rossen Ivanov. Generalised Fourier transform and perturbations to soliton equations. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 579-595. doi: 10.3934/dcdsb.2009.12.579 |
[14] |
Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems and Imaging, 2020, 14 (1) : 1-26. doi: 10.3934/ipi.2019061 |
[15] |
Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems and Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009 |
[16] |
Dmitry Treschev. Oscillator and thermostat. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1693-1712. doi: 10.3934/dcds.2010.28.1693 |
[17] |
Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems and Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317 |
[18] |
Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems and Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013 |
[19] |
Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems and Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619 |
[20] |
Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems and Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]