• Previous Article
    Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment
  • DCDS Home
  • This Issue
  • Next Article
    Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large data and vacuum
June  2009, 24(2): 471-487. doi: 10.3934/dcds.2009.24.471

On the injectivity of the X-ray transform for Anosov thermostats

1. 

Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge CB3 0WB, United Kingdom, United Kingdom

Received  July 2008 Revised  November 2008 Published  March 2009

We consider Anosov thermostats on a closed surface and the X-ray transform on functions which are up to degree two in the velocities. We show that the subspace where the X-ray transform fails to be s-injective is finite dimensional. Furthermore, if the surface is negatively curved and the thermostat is pure Gaussian (i.e. no magnetic field is present), then the X-ray transform is s-injective.
Citation: Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471
[1]

François Rouvière. X-ray transform on Damek-Ricci spaces. Inverse Problems and Imaging, 2010, 4 (4) : 713-720. doi: 10.3934/ipi.2010.4.713

[2]

Aleksander Denisiuk. On range condition of the tensor x-ray transform in $ \mathbb R^n $. Inverse Problems and Imaging, 2020, 14 (3) : 423-435. doi: 10.3934/ipi.2020020

[3]

Wenzhong Zhu, Huanlong Jiang, Erli Wang, Yani Hou, Lidong Xian, Joyati Debnath. X-ray image global enhancement algorithm in medical image classification. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1297-1309. doi: 10.3934/dcdss.2019089

[4]

Silvia Allavena, Michele Piana, Federico Benvenuto, Anna Maria Massone. An interpolation/extrapolation approach to X-ray imaging of solar flares. Inverse Problems and Imaging, 2012, 6 (2) : 147-162. doi: 10.3934/ipi.2012.6.147

[5]

Nuutti Hyvönen, Martti Kalke, Matti Lassas, Henri Setälä, Samuli Siltanen. Three-dimensional dental X-ray imaging by combination of panoramic and projection data. Inverse Problems and Imaging, 2010, 4 (2) : 257-271. doi: 10.3934/ipi.2010.4.257

[6]

Arun K. Kulshreshth, Andreas Alpers, Gabor T. Herman, Erik Knudsen, Lajos Rodek, Henning F. Poulsen. A greedy method for reconstructing polycrystals from three-dimensional X-ray diffraction data. Inverse Problems and Imaging, 2009, 3 (1) : 69-85. doi: 10.3934/ipi.2009.3.69

[7]

Zhenhua Zhao, Yining Zhu, Jiansheng Yang, Ming Jiang. Mumford-Shah-TV functional with application in X-ray interior tomography. Inverse Problems and Imaging, 2018, 12 (2) : 331-348. doi: 10.3934/ipi.2018015

[8]

Jakob S. Jørgensen, Emil Y. Sidky, Per Christian Hansen, Xiaochuan Pan. Empirical average-case relation between undersampling and sparsity in X-ray CT. Inverse Problems and Imaging, 2015, 9 (2) : 431-446. doi: 10.3934/ipi.2015.9.431

[9]

Weihao Shen, Wenbo Xu, Hongyang Zhang, Zexin Sun, Jianxiong Ma, Xinlong Ma, Shoujun Zhou, Shijie Guo, Yuanquan Wang. Automatic segmentation of the femur and tibia bones from X-ray images based on pure dilated residual U-Net. Inverse Problems and Imaging, 2021, 15 (6) : 1333-1346. doi: 10.3934/ipi.2020057

[10]

Hiroshi Fujiwara, Kamran Sadiq, Alexandru Tamasan. Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc. Inverse Problems and Imaging, 2022, 16 (1) : 215-228. doi: 10.3934/ipi.2021047

[11]

Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems and Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27

[12]

Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801

[13]

Georgi Grahovski, Rossen Ivanov. Generalised Fourier transform and perturbations to soliton equations. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 579-595. doi: 10.3934/dcdsb.2009.12.579

[14]

Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems and Imaging, 2020, 14 (1) : 1-26. doi: 10.3934/ipi.2019061

[15]

Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems and Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009

[16]

Dmitry Treschev. Oscillator and thermostat. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1693-1712. doi: 10.3934/dcds.2010.28.1693

[17]

Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems and Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317

[18]

Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems and Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013

[19]

Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems and Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619

[20]

Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems and Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (82)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]