
Previous Article
Population dynamical behavior of nonautonomous LotkaVolterra competitive system with random perturbation
 DCDS Home
 This Issue

Next Article
Stability and Hopf bifurcation of coexistence steadystates to an SKT model in spatially heterogeneous environment
Critical thresholds in a relaxation system with resonance of characteristic speeds
1.  Department of Mathematics, University of Iowa, 14 MacLean Hall, Iowa City, IA 522421419 
2.  Department of Mathematics, Iowa State University, Ames, IA 50011, United States 
[1] 
Tong Li, Sunčica Čanić. Critical thresholds in a quasilinear hyperbolic model of blood flow. Networks & Heterogeneous Media, 2009, 4 (3) : 527536. doi: 10.3934/nhm.2009.4.527 
[2] 
Yongki Lee, Hailiang Liu. Thresholds for shock formation in traffic flow models with Arrhenius lookahead dynamics. Discrete & Continuous Dynamical Systems  A, 2015, 35 (1) : 323339. doi: 10.3934/dcds.2015.35.323 
[3] 
WenRong Dai. Formation of singularities to quasilinear hyperbolic systems with initial data of small BV norm. Discrete & Continuous Dynamical Systems  A, 2012, 32 (10) : 35013524. doi: 10.3934/dcds.2012.32.3501 
[4] 
Dong Li, Tong Li. Shock formation in a traffic flow model with Arrhenius lookahead dynamics. Networks & Heterogeneous Media, 2011, 6 (4) : 681694. doi: 10.3934/nhm.2011.6.681 
[5] 
Priyanjana M. N. Dharmawardane. Decay property of regularityloss type for quasilinear hyperbolic systems of viscoelasticity. Conference Publications, 2013, 2013 (special) : 197206. doi: 10.3934/proc.2013.2013.197 
[6] 
Ángela JiménezCasas, Aníbal RodríguezBernal. Linear model of traffic flow in an isolated network. Conference Publications, 2015, 2015 (special) : 670677. doi: 10.3934/proc.2015.0670 
[7] 
Yongqin Liu, Shuichi Kawashima. Global existence and asymptotic behavior of solutions for quasilinear dissipative plate equation. Discrete & Continuous Dynamical Systems  A, 2011, 29 (3) : 11131139. doi: 10.3934/dcds.2011.29.1113 
[8] 
Florent Berthelin, Paola Goatin. Regularity results for the solutions of a nonlocal model of traffic flow. Discrete & Continuous Dynamical Systems  A, 2019, 39 (6) : 31973213. doi: 10.3934/dcds.2019132 
[9] 
Tuhin Ghosh, Karthik Iyer. Cloaking for a quasilinear elliptic partial differential equation. Inverse Problems & Imaging, 2018, 12 (2) : 461491. doi: 10.3934/ipi.2018020 
[10] 
Vitali Liskevich, Igor I. Skrypnik. Pointwise estimates for solutions of singular quasilinear parabolic equations. Discrete & Continuous Dynamical Systems  S, 2013, 6 (4) : 10291042. doi: 10.3934/dcdss.2013.6.1029 
[11] 
Christopher Grumiau, Marco Squassina, Christophe Troestler. On the MountainPass algorithm for the quasilinear Schrödinger equation. Discrete & Continuous Dynamical Systems  B, 2013, 18 (5) : 13451360. doi: 10.3934/dcdsb.2013.18.1345 
[12] 
Timur Akhunov. Local wellposedness of quasilinear systems generalizing KdV. Communications on Pure & Applied Analysis, 2013, 12 (2) : 899921. doi: 10.3934/cpaa.2013.12.899 
[13] 
Boris Buffoni, Laurent Landry. Multiplicity of homoclinic orbits in quasilinear autonomous Lagrangian systems. Discrete & Continuous Dynamical Systems  A, 2010, 27 (1) : 75116. doi: 10.3934/dcds.2010.27.75 
[14] 
Teemu Tyni, Valery Serov. Inverse scattering problem for quasilinear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159175. doi: 10.3934/ipi.2019009 
[15] 
Yingte Sun, Xiaoping Yuan. Quasiperiodic solution of quasilinear fifthorder KdV equation. Discrete & Continuous Dynamical Systems  A, 2018, 38 (12) : 62416285. doi: 10.3934/dcds.2018268 
[16] 
Vasily Denisov and Andrey Muravnik. On asymptotic behavior of solutions of the Dirichlet problem in halfspace for linear and quasilinear elliptic equations. Electronic Research Announcements, 2003, 9: 8893. 
[17] 
Misha Bialy, Andrey E. Mironov. Rich quasilinear system for integrable geodesic flows on 2torus. Discrete & Continuous Dynamical Systems  A, 2011, 29 (1) : 8190. doi: 10.3934/dcds.2011.29.81 
[18] 
Massimo Lanza de Cristoforis, aolo Musolino. A quasilinear heat transmission problem in a periodic twophase dilute composite. A functional analytic approach. Communications on Pure & Applied Analysis, 2014, 13 (6) : 25092542. doi: 10.3934/cpaa.2014.13.2509 
[19] 
Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for nonautonomous quasilinear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems  B, 2012, 17 (7) : 26352651. doi: 10.3934/dcdsb.2012.17.2635 
[20] 
Guangying Lv, Mingxin Wang. Existence, uniqueness and stability of traveling wave fronts of discrete quasilinear equations with delay. Discrete & Continuous Dynamical Systems  B, 2010, 13 (2) : 415433. doi: 10.3934/dcdsb.2010.13.415 
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]