June  2009, 24(2): 567-587. doi: 10.3934/dcds.2009.24.567

Asymptotic of the number of obstacles visited by the planar Lorentz process

1. 

Université Européenne de Bretagne, Université de Brest, Laboratoire de Mathématiques UMR CNRS 6205, 6 avenue Le Gorgeu, 29285 Brest cedex, France

Received  March 2008 Revised  August 2008 Published  March 2009

We are interested in the planar Lorentz process with a periodic configuration of strictly convex obstacles and with finite horizon. Its recurrence comes from a criteria of Conze in [8] or of Schmidt in [15] and from the central limit theorem for the billiard in the torus ([2,4,19]) Another way to prove recurrence is given by Szász and Varjú in [18]. Total ergodicity follows from these results (see [16] and [12]). In this paper we answer a question of Szász about the asymptotic behaviour of the number of visited cells when the time goes to infinity. It is not more difficult to study the asymptotic of the number of obstacles hit by the particle when the time goes to infinity. We give an estimate for the expectation and a result of almost sure convergence. For the simple random walk in Z2, this question has been studied by Dvoretzky and Erdös in [10]. We adapt the proof of Dvoretzky and Erdös. The lack of independence is compensated by a strong decorrelation result due to Chernov ([6])and by some refinement (got in [14])of the local limit theorem proved by Szász and Varjú in [18].
Citation: Françoise Pène. Asymptotic of the number of obstacles visited by the planar Lorentz process. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 567-587. doi: 10.3934/dcds.2009.24.567
[1]

François Golse. The Boltzmann-Grad limit for the Lorentz gas with a Poisson distribution of obstacles. Kinetic and Related Models, 2022, 15 (3) : 517-534. doi: 10.3934/krm.2022001

[2]

Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665

[3]

Françoise Pène. Self-intersections of trajectories of the Lorentz process. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4781-4806. doi: 10.3934/dcds.2014.34.4781

[4]

Paolo Maremonti. A remark on the Stokes problem in Lorentz spaces. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1323-1342. doi: 10.3934/dcdss.2013.6.1323

[5]

Manuel Gutiérrez. Lorentz geometry technique in nonimaging optics. Conference Publications, 2003, 2003 (Special) : 386-392. doi: 10.3934/proc.2003.2003.386

[6]

David Cowan. A billiard model for a gas of particles with rotation. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 101-109. doi: 10.3934/dcds.2008.22.101

[7]

Neal Bez, Sanghyuk Lee, Shohei Nakamura, Yoshihiro Sawano. Sharpness of the Brascamp–Lieb inequality in Lorentz spaces. Electronic Research Announcements, 2017, 24: 53-63. doi: 10.3934/era.2017.24.006

[8]

Junjie Zhang, Shenzhou Zheng. Weighted lorentz estimates for nondivergence linear elliptic equations with partially BMO coefficients. Communications on Pure and Applied Analysis, 2017, 16 (3) : 899-914. doi: 10.3934/cpaa.2017043

[9]

A. Carati. On the existence of scattering solutions for the Abraham-Lorentz-Dirac equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 471-480. doi: 10.3934/dcdsb.2006.6.471

[10]

Shuang Liang, Shenzhou Zheng. Variable lorentz estimate for stationary stokes system with partially BMO coefficients. Communications on Pure and Applied Analysis, 2019, 18 (6) : 2879-2903. doi: 10.3934/cpaa.2019129

[11]

Siyuan Tang. New time-changes of unipotent flows on quotients of Lorentz groups. Journal of Modern Dynamics, 2022, 18: 13-67. doi: 10.3934/jmd.2022002

[12]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[13]

Sun-Sig Byun, Yumi Cho. Lorentz-Morrey regularity for nonlinear elliptic problems with irregular obstacles over Reifenberg flat domains. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4791-4804. doi: 10.3934/dcds.2015.35.4791

[14]

Stéphane Brull, Pierre Degond, Fabrice Deluzet, Alexandre Mouton. Asymptotic-preserving scheme for a bi-fluid Euler-Lorentz model. Kinetic and Related Models, 2011, 4 (4) : 991-1023. doi: 10.3934/krm.2011.4.991

[15]

Alessio Pomponio. Oscillating solutions for prescribed mean curvature equations: euclidean and lorentz-minkowski cases. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3899-3911. doi: 10.3934/dcds.2018169

[16]

Ghulam Rasool, Anum Shafiq, Chaudry Masood Khalique. Marangoni forced convective Casson type nanofluid flow in the presence of Lorentz force generated by Riga plate. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2517-2533. doi: 10.3934/dcdss.2021059

[17]

Kazuhiro Ishige, Yujiro Tateishi. Decay estimates for Schrödinger heat semigroup with inverse square potential in Lorentz spaces II. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 369-401. doi: 10.3934/dcds.2021121

[18]

Mathias Staudigl. A limit theorem for Markov decision processes. Journal of Dynamics and Games, 2014, 1 (4) : 639-659. doi: 10.3934/jdg.2014.1.639

[19]

Gianluca Favre, Marlies Pirner, Christian Schmeiser. Thermalization of a rarefied gas with total energy conservation: Existence, hypocoercivity, macroscopic limit. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022015

[20]

Jean-Pierre Conze, Stéphane Le Borgne, Mikaël Roger. Central limit theorem for stationary products of toral automorphisms. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1597-1626. doi: 10.3934/dcds.2012.32.1597

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]