June  2009, 24(2): 589-611. doi: 10.3934/dcds.2009.24.589

Attractor minimal sets for nonautonomous type-K competitive and semi-convex delay differential equations with applications

1. 

School of Mathematic and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China

Received  February 2008 Revised  November 2008 Published  March 2009

Skew-product semiflows induced by semi-convex and type-K competitive almost periodic delay differential equations are studied. If $M$ is a compact positively invariant subset of the skew-product semiflow, then continuous separation of the skew-product semiflow on $M$ holds. Furthermore, if two minimal subsets $M_{1}$ and $M_{2}$ of the skew-product semiflow satisfying completely strongly type-K ordering $M_{1}$«$^C_K M_{2}$, then $M_{1}$ is an attractor. Finally, these results are applied to a nonautonomous delayed Hopfield-type neural networks with the diagonal-nonnegative type-K monotone interconnection matrix and sufficient conditions are obtained for the existence of global or partial attractors.
Citation: Wan-Tong Li, Bin-Guo Wang. Attractor minimal sets for nonautonomous type-K competitive and semi-convex delay differential equations with applications. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 589-611. doi: 10.3934/dcds.2009.24.589
[1]

Sylvia Novo, Carmen Núñez, Rafael Obaya, Ana M. Sanz. Skew-product semiflows for non-autonomous partial functional differential equations with delay. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4291-4321. doi: 10.3934/dcds.2014.34.4291

[2]

Juan A. Calzada, Rafael Obaya, Ana M. Sanz. Continuous separation for monotone skew-product semiflows: From theoretical to numerical results. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 915-944. doi: 10.3934/dcdsb.2015.20.915

[3]

Dorina Mitrea, Irina Mitrea, Marius Mitrea, Lixin Yan. Coercive energy estimates for differential forms in semi-convex domains. Communications on Pure & Applied Analysis, 2010, 9 (4) : 987-1010. doi: 10.3934/cpaa.2010.9.987

[4]

Tomás Caraballo, Alexandre N. Carvalho, Henrique B. da Costa, José A. Langa. Equi-attraction and continuity of attractors for skew-product semiflows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2949-2967. doi: 10.3934/dcdsb.2016081

[5]

Dejun Fan, Xiaoyu Yi, Ling Xia, Jingliang Lv. Dynamical behaviors of stochastic type K monotone Lotka-Volterra systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2901-2922. doi: 10.3934/dcdsb.2018291

[6]

Jinkui Liu, Shengjie Li. Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2017, 13 (1) : 283-295. doi: 10.3934/jimo.2016017

[7]

Xianhua Huang. Almost periodic and periodic solutions of certain dissipative delay differential equations. Conference Publications, 1998, 1998 (Special) : 301-313. doi: 10.3934/proc.1998.1998.301

[8]

Weigao Ge, Li Zhang. Multiple periodic solutions of delay differential systems with $2k-1$ lags via variational approach. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4925-4943. doi: 10.3934/dcds.2016013

[9]

Benedetta Lisena. Average criteria for periodic neural networks with delay. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 761-773. doi: 10.3934/dcdsb.2014.19.761

[10]

Eduardo Liz, Manuel Pinto, Gonzalo Robledo, Sergei Trofimchuk, Victor Tkachenko. Wright type delay differential equations with negative Schwarzian. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 309-321. doi: 10.3934/dcds.2003.9.309

[11]

P.E. Kloeden, Victor S. Kozyakin. The perturbation of attractors of skew-product flows with a shadowing driving system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 883-893. doi: 10.3934/dcds.2001.7.883

[12]

Saša Kocić. Reducibility of skew-product systems with multidimensional Brjuno base flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 261-283. doi: 10.3934/dcds.2011.29.261

[13]

Gaohang Yu, Shanzhou Niu, Jianhua Ma. Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. Journal of Industrial & Management Optimization, 2013, 9 (1) : 117-129. doi: 10.3934/jimo.2013.9.117

[14]

Jingang Xiong, Jiguang Bao. The obstacle problem for Monge-Ampère type equations in non-convex domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 59-68. doi: 10.3934/cpaa.2011.10.59

[15]

Bogdan Sasu, A. L. Sasu. Input-output conditions for the asymptotic behavior of linear skew-product flows and applications. Communications on Pure & Applied Analysis, 2006, 5 (3) : 551-569. doi: 10.3934/cpaa.2006.5.551

[16]

Tomás Caraballo, David Cheban. Almost periodic and almost automorphic solutions of linear differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1857-1882. doi: 10.3934/dcds.2013.33.1857

[17]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[18]

Qiumei Huang, Xiuxiu Xu, Hermann Brunner. Continuous Galerkin methods on quasi-geometric meshes for delay differential equations of pantograph type. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5423-5443. doi: 10.3934/dcds.2016039

[19]

Jie Tang, Ziqing Xie, Zhimin Zhang. The long time behavior of a spectral collocation method for delay differential equations of pantograph type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 797-819. doi: 10.3934/dcdsb.2013.18.797

[20]

Fuke Wu, Shigeng Hu. The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1065-1094. doi: 10.3934/dcds.2012.32.1065

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]