
Previous Article
The Boltzmann equation in the 20th century
 DCDS Home
 This Issue

Next Article
Symmetries of evolution equations with nonlocal operators and applications to the Boltzmann equation
Overpopulated tails for conservativeinthemean inelastic Maxwell models
1.  ICREADepartament de Matemàtiques, Universitat Autònoma de Barcelona, E08193 Bellaterra, Spain 
2.  Fédération Denis Poisson (FR 2964), Department of Mathematics (MAPMO UMR 6628), University of Orléans and CNRS, F45067 Orléans, France 
3.  Dipartimento di Matematica, Università di Pavia, via Ferrata 1, I27100 Pavia, Italy 
[1] 
Yadong Shang, Jianjun Paul Tian, Bixiang Wang. Asymptotic behavior of the stochastic KellerSegel equations. Discrete & Continuous Dynamical Systems  B, 2019, 24 (3) : 13671391. doi: 10.3934/dcdsb.2019020 
[2] 
Giuseppe Da Prato, Arnaud Debussche. Asymptotic behavior of stochastic PDEs with random coefficients. Discrete & Continuous Dynamical Systems, 2010, 27 (4) : 15531570. doi: 10.3934/dcds.2010.27.1553 
[3] 
Daehwan Kim, Juncheol Pyo. Existence and asymptotic behavior of helicoidal translating solitons of the mean curvature flow. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 58975919. doi: 10.3934/dcds.2018256 
[4] 
Sanling Yuan, Xuehui Ji, Huaiping Zhu. Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 14771498. doi: 10.3934/mbe.2017077 
[5] 
Tian Zhang, Huabin Chen, Chenggui Yuan, Tomás Caraballo. On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations. Discrete & Continuous Dynamical Systems  B, 2019, 24 (10) : 53555375. doi: 10.3934/dcdsb.2019062 
[6] 
Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete & Continuous Dynamical Systems  B, 2012, 17 (5) : 14411453. doi: 10.3934/dcdsb.2012.17.1441 
[7] 
Xiaobin Yao. Asymptotic behavior for stochastic plate equations with memory and additive noise on unbounded domains. Discrete & Continuous Dynamical Systems  B, 2022, 27 (1) : 443468. doi: 10.3934/dcdsb.2021050 
[8] 
Ciro D’Apice, Umberto De Maio, T. A. Mel'nyk. Asymptotic analysis of a perturbed parabolic problem in a thick junction of type 3:2:2. Networks & Heterogeneous Media, 2007, 2 (2) : 255277. doi: 10.3934/nhm.2007.2.255 
[9] 
Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic meansquare stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems  B, 2013, 18 (6) : 15211531. doi: 10.3934/dcdsb.2013.18.1521 
[10] 
Xiaobin Yao, Qiaozhen Ma, Tingting Liu. Asymptotic behavior for stochastic plate equations with rotational inertia and KelvinVoigt dissipative term on unbounded domains. Discrete & Continuous Dynamical Systems  B, 2019, 24 (4) : 18891917. doi: 10.3934/dcdsb.2018247 
[11] 
Dingshi Li, Xiaohu Wang. Asymptotic behavior of stochastic complex GinzburgLandau equations with deterministic nonautonomous forcing on thin domains. Discrete & Continuous Dynamical Systems  B, 2019, 24 (2) : 449465. doi: 10.3934/dcdsb.2018181 
[12] 
Dandan Ma, Ji Shu, Ling Qin. WongZakai approximations and asymptotic behavior of stochastic GinzburgLandau equations. Discrete & Continuous Dynamical Systems  B, 2020, 25 (11) : 43354359. doi: 10.3934/dcdsb.2020100 
[13] 
G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified NavierStokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure & Applied Analysis, 2018, 17 (6) : 25932621. doi: 10.3934/cpaa.2018123 
[14] 
Yiju Chen, Xiaohu Wang. Asymptotic behavior of nonautonomous fractional stochastic lattice systems with multiplicative noise. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021271 
[15] 
Veronica Felli, Alberto Ferrero, Susanna Terracini. On the behavior at collisions of solutions to Schrödinger equations with manyparticle and cylindrical potentials. Discrete & Continuous Dynamical Systems, 2012, 32 (11) : 38953956. doi: 10.3934/dcds.2012.32.3895 
[16] 
Jingwei Hu, Shi Jin, Li Wang. An asymptoticpreserving scheme for the semiconductor Boltzmann equation with twoscale collisions: A splitting approach. Kinetic & Related Models, 2015, 8 (4) : 707723. doi: 10.3934/krm.2015.8.707 
[17] 
Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 721727. doi: 10.3934/dcdsb.2004.4.721 
[18] 
Nguyen Huu Du, Nguyen Thanh Dieu. Longtime behavior of an SIR model with perturbed disease transmission coefficient. Discrete & Continuous Dynamical Systems  B, 2016, 21 (10) : 34293440. doi: 10.3934/dcdsb.2016105 
[19] 
Tomasz Komorowski, Łukasz Stȩpień. Kinetic limit for a harmonic chain with a conservative OrnsteinUhlenbeck stochastic perturbation. Kinetic & Related Models, 2018, 11 (2) : 239278. doi: 10.3934/krm.2018013 
[20] 
Mykhailo Potomkin. Asymptotic behavior of thermoviscoelastic Berger plate. Communications on Pure & Applied Analysis, 2010, 9 (1) : 161192. doi: 10.3934/cpaa.2010.9.161 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]