• Previous Article
    Asymptotic behavior of solutions of a free boundary problem modelling the growth of tumors with Stokes equations
  • DCDS Home
  • This Issue
  • Next Article
    Attractor minimal sets for nonautonomous type-K competitive and semi-convex delay differential equations with applications
June  2009, 24(2): 613-624. doi: 10.3934/dcds.2009.24.613

Markov partitions reflecting the geometry of $\times2$, $\times3$

1. 

School of Mathematics, University of East Anglia, Norwich, NR4 7TJ, United Kingdom

2. 

Centro de Modelamiento Matemático, Universidad de Chile, Av. Blanco Encalada 2120, piso 7, Santiago, Chile

Received  July 2008 Revised  November 2008 Published  March 2009

We give an explicit geometric description of the $\times2$, $\times3$ system, and use this to study a uniform family of Markov partitions related to those of Wilson and Abramov. The behaviour of these partitions is stable across expansive cones and transitions in this behaviour detect the non-expansive lines.
Citation: Thomas Ward, Yuki Yayama. Markov partitions reflecting the geometry of $\times2$, $\times3$. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 613-624. doi: 10.3934/dcds.2009.24.613
[1]

Haritha C, Nikita Agarwal. Product of expansive Markov maps with hole. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5743-5774. doi: 10.3934/dcds.2019252

[2]

A. A. Pinto, D. Sullivan. The circle and the solenoid. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 463-504. doi: 10.3934/dcds.2006.16.463

[3]

Ken Ono. Parity of the partition function. Electronic Research Announcements, 1995, 1: 35-42.

[4]

Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics and Games, 2021, 8 (3) : 187-202. doi: 10.3934/jdg.2021005

[5]

Alfonso Artigue. Expansive flows of surfaces. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 505-525. doi: 10.3934/dcds.2013.33.505

[6]

Jorge Groisman. Expansive homeomorphisms of the plane. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 213-239. doi: 10.3934/dcds.2011.29.213

[7]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399

[8]

Alfonso Artigue. Lipschitz perturbations of expansive systems. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1829-1841. doi: 10.3934/dcds.2015.35.1829

[9]

Se-Hyun Ku. Expansive flows on uniform spaces. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1585-1598. doi: 10.3934/dcds.2021165

[10]

Keonhee Lee, Arnoldo Rojas. Eventually expansive semiflows. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022102

[11]

Alfonso Artigue. Singular cw-expansive flows. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 2945-2956. doi: 10.3934/dcds.2017126

[12]

Qiang Du, Jingyan Zhang. Asymptotic analysis of a diffuse interface relaxation to a nonlocal optimal partition problem. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1443-1461. doi: 10.3934/dcds.2011.29.1443

[13]

Yilun Shang. Group pinning consensus under fixed and randomly switching topologies with acyclic partition. Networks and Heterogeneous Media, 2014, 9 (3) : 553-573. doi: 10.3934/nhm.2014.9.553

[14]

Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709

[15]

Alfonso Artigue. Anomalous cw-expansive surface homeomorphisms. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3511-3518. doi: 10.3934/dcds.2016.36.3511

[16]

Woochul Jung, Ngocthach Nguyen, Yinong Yang. Spectral decomposition for rescaling expansive flows with rescaled shadowing. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2267-2283. doi: 10.3934/dcds.2020113

[17]

Alfonso Artigue. Robustly N-expansive surface diffeomorphisms. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2367-2376. doi: 10.3934/dcds.2016.36.2367

[18]

Martín Sambarino, José L. Vieitez. On $C^1$-persistently expansive homoclinic classes. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 465-481. doi: 10.3934/dcds.2006.14.465

[19]

Martín Sambarino, José L. Vieitez. Robustly expansive homoclinic classes are generically hyperbolic. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1325-1333. doi: 10.3934/dcds.2009.24.1325

[20]

Keonhee Lee, Manseob Lee. Hyperbolicity of $C^1$-stably expansive homoclinic classes. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1133-1145. doi: 10.3934/dcds.2010.27.1133

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (129)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]