Advanced Search
Article Contents
Article Contents

On the stability of high Lewis number combustion fronts

Abstract Related Papers Cited by
  • We consider wavefronts that arise in a mathematical model for high Lewis number combustion processes. An efficient method for the proof of the existence and uniqueness of combustion fronts is provided by geometric singular perturbation theory. The fronts supported by the model with very large Lewis numbers are small perturbations of the front supported by the model with infinite Lewis number. The question of stability for the fronts is more complicated. Besides discrete spectrum, the system possesses essential spectrum up to the imaginary axis. We show how a geometric approach which involves construction of the Stability Index Bundles can be used to relate the spectral stability of wavefronts with high Lewis numbers to the spectral stability of the front in the case of infinite Lewis number. We discuss the implication for nonlinear stability of fronts with high Lewis numbers. This work builds on the ideas developed by Gardner and Jones [12] and generalized in the papers by Bates, Fife, Gardner and Jones [3, 4].
    Mathematics Subject Classification: Primary: 35B35, 80A25; Secondary: 35K57, 34C37.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(64) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint