August  2009, 24(3): 809-826. doi: 10.3934/dcds.2009.24.809

On the stability of high Lewis number combustion fronts


Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States, United States

Received  February 2008 Revised  June 2008 Published  April 2009

We consider wavefronts that arise in a mathematical model for high Lewis number combustion processes. An efficient method for the proof of the existence and uniqueness of combustion fronts is provided by geometric singular perturbation theory. The fronts supported by the model with very large Lewis numbers are small perturbations of the front supported by the model with infinite Lewis number. The question of stability for the fronts is more complicated. Besides discrete spectrum, the system possesses essential spectrum up to the imaginary axis. We show how a geometric approach which involves construction of the Stability Index Bundles can be used to relate the spectral stability of wavefronts with high Lewis numbers to the spectral stability of the front in the case of infinite Lewis number. We discuss the implication for nonlinear stability of fronts with high Lewis numbers. This work builds on the ideas developed by Gardner and Jones [12] and generalized in the papers by Bates, Fife, Gardner and Jones [3, 4].
Citation: Anna Ghazaryan, Christopher K. R. T. Jones. On the stability of high Lewis number combustion fronts. Discrete & Continuous Dynamical Systems, 2009, 24 (3) : 809-826. doi: 10.3934/dcds.2009.24.809

Zhen-Hui Bu, Zhi-Cheng Wang. Stability of pyramidal traveling fronts in the degenerate monostable and combustion equations Ⅰ. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2395-2430. doi: 10.3934/dcds.2017104


Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2935-2950. doi: 10.3934/dcdsb.2018112


Debora Amadori, Wen Shen. Front tracking approximations for slow erosion. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1481-1502. doi: 10.3934/dcds.2012.32.1481


Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 275-305. doi: 10.3934/cpaa.2012.11.275


Zhen-Hui Bu, Zhi-Cheng Wang. Global stability of V-shaped traveling fronts in combustion and degenerate monostable equations. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2251-2286. doi: 10.3934/dcds.2018093


Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219


Chunhua Shan. Slow-fast dynamics and nonlinear oscillations in transmission of mosquito-borne diseases. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021097


Anatoly Neishtadt, Carles Simó, Dmitry Treschev, Alexei Vasiliev. Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow-fast systems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 621-650. doi: 10.3934/dcdsb.2008.10.621


Claude-Michel Brauner, Josephus Hulshof, Luca Lorenzi, Gregory I. Sivashinsky. A fully nonlinear equation for the flame front in a quasi-steady combustion model. Discrete & Continuous Dynamical Systems, 2010, 27 (4) : 1415-1446. doi: 10.3934/dcds.2010.27.1415


Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047


C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603-614. doi: 10.3934/mbe.2006.3.603


Luca Biasco, Laura Di Gregorio. Periodic solutions of Birkhoff-Lewis type for the nonlinear wave equation. Conference Publications, 2007, 2007 (Special) : 102-109. doi: 10.3934/proc.2007.2007.102


Faustino Sánchez-Garduño, Philip K. Maini, Judith Pérez-Velázquez. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 455-487. doi: 10.3934/dcdsb.2010.13.455


Lianzhang Bao, Zhengfang Zhou. Traveling wave in backward and forward parabolic equations from population dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1507-1522. doi: 10.3934/dcdsb.2014.19.1507


Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735


Jonathan E. Rubin. A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium. Discrete & Continuous Dynamical Systems, 2004, 10 (4) : 925-940. doi: 10.3934/dcds.2004.10.925


Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001


Valeria De Mattei. Competition with high number of agents and a major one. Journal of Dynamics & Games, 2016, 3 (4) : 319-334. doi: 10.3934/jdg.2016017


Yuri Latushkin, Roland Schnaubelt, Xinyao Yang. Stable foliations near a traveling front for reaction diffusion systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3145-3165. doi: 10.3934/dcdsb.2017168


Jong-Shenq Guo, Hirokazu Ninomiya, Chin-Chin Wu. Existence of a rotating wave pattern in a disk for a wave front interaction model. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1049-1063. doi: 10.3934/cpaa.2013.12.1049

2020 Impact Factor: 1.392


  • PDF downloads (40)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]