• Previous Article
    Shell structure as solution to a free boundary problem from block copolymer morphology
  • DCDS Home
  • This Issue
  • Next Article
    Regularization of simultaneous binary collisions and solutions with singularity in the collinear four-body problem
August  2009, 24(3): 933-978. doi: 10.3934/dcds.2009.24.933

An eigenvalue variation problem of magnetic Schrödinger operator in three dimensions

1. 

Department of Mathematics, East China Normal University, Shanghai 200062, China

Received  August 2007 Revised  June 2008 Published  April 2009

This paper concerns the lowest eigenvalue $\mu(b\N^Q)$ of the Schrödinger operator in three-dimensions with a magnetic potential $b\N^Q$, where the vector field $\N^Q$ depends on a matrix $Q$ varying in $SO(3)$ and $b$ is a real parameter. The eigenvalue variation problem is to minimize the lowest eigenvalue among all $Q$ in $SO(3)$. This problem arises in the phase transitions of smectic liquid crystals. We give an estimate of the minimum value inf${\mu(b\N^Q):~Q\in SO(3)\}$ for large $b$, and examine its dependence on geometry of the domain surface.
Citation: Xing-Bin Pan. An eigenvalue variation problem of magnetic Schrödinger operator in three dimensions. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 933-978. doi: 10.3934/dcds.2009.24.933
[1]

M. Carme Calderer, Carlos A. Garavito Garzón, Baisheng Yan. A Landau--de Gennes theory of liquid crystal elastomers. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 283-302. doi: 10.3934/dcdss.2015.8.283

[2]

Apala Majumdar. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1303-1337. doi: 10.3934/cpaa.2012.11.1303

[3]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[4]

Quanyi Liang, Kairong Liu, Gang Meng, Zhikun She. Minimization of the lowest eigenvalue for a vibrating beam. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2079-2092. doi: 10.3934/dcds.2018085

[5]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[6]

Joel Andersson, Leo Tzou. Stability for a magnetic Schrödinger operator on a Riemann surface with boundary. Inverse Problems & Imaging, 2018, 12 (1) : 1-28. doi: 10.3934/ipi.2018001

[7]

Ru-Yu Lai. Global uniqueness for an inverse problem for the magnetic Schrödinger operator. Inverse Problems & Imaging, 2011, 5 (1) : 59-73. doi: 10.3934/ipi.2011.5.59

[8]

Leyter Potenciano-Machado, Alberto Ruiz. Stability estimates for a magnetic Schrödinger operator with partial data. Inverse Problems & Imaging, 2018, 12 (6) : 1309-1342. doi: 10.3934/ipi.2018055

[9]

Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229

[10]

Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems & Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034

[11]

Eric P. Choate, Hong Zhou. Optimization of electromagnetic wave propagation through a liquid crystal layer. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 303-312. doi: 10.3934/dcdss.2015.8.303

[12]

Björn Sandstede, Arnd Scheel. Evans function and blow-up methods in critical eigenvalue problems. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 941-964. doi: 10.3934/dcds.2004.10.941

[13]

Jonathan E. Rubin. A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 925-940. doi: 10.3934/dcds.2004.10.925

[14]

T. Tachim Medjo. On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2243-2264. doi: 10.3934/cpaa.2019101

[15]

Thomas Duyckaerts, Carlos E. Kenig, Frank Merle. Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and Schrödinger equations. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1275-1326. doi: 10.3934/cpaa.2015.14.1275

[16]

Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541

[17]

Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371

[18]

Maria Fărcăşeanu, Mihai Mihăilescu, Denisa Stancu-Dumitru. Perturbed fractional eigenvalue problems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6243-6255. doi: 10.3934/dcds.2017270

[19]

Ravi P. Agarwal, Kanishka Perera, Zhitao Zhang. On some nonlocal eigenvalue problems. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 707-714. doi: 10.3934/dcdss.2012.5.707

[20]

Wei-Ming Ni, Xuefeng Wang. On the first positive Neumann eigenvalue. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 1-19. doi: 10.3934/dcds.2007.17.1

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]