    September  2009, 25(3): 1061-1079. doi: 10.3934/dcds.2009.25.1061

## Estimating thermal insulating ability of anisotropic coatings via Robin eigenvalues and eigenfunctions

 1 Laboratory of Nonlinear Analysis, Department of Mathematics, Central China Normal University, 430079, China 2 Mathematics Department, Tulane University, New Orleans, LA 70118, United States 3 School of Mathematics and Statistics, Northeast Normal University, 130024, China

Received  October 2008 Revised  February 2009 Published  August 2009

The problem considered in this paper is the protection from overheating of a thermal conductor $\Omega_1$ by a thin anisotropic coating $\Omega_2$ (e.g. a space shuttle painted with a nano-insulator). We assume Newton's Cooling Law, so the temperature satisfies the Robin boundary condition on the outer boundary of the coating. Since the temperature function on $\Omega=\overline{\Omega}_1\cup\Omega_2$ can be expanded in terms of the eigenvalues and eigenfunctions of the elliptic operator $u\mapsto -\nabla (A \nabla u)$ with the Robin boundary condition on $\partial\Omega$, where $A$ is the thermal tensor of $\Omega$, we propose the following means to ensure the insulating ability of $\Omega_2$: (A) as many eigenvalues as possible should be small, in particular, the first eigenvalue should be small, (B) the first normalized eigenfunction should take large values on the body $\Omega_1$; we also argue that it is helpful for the understanding of the dynamics if (C) higher normalized eigenfunctions take small absolute values on $\Omega_1$. We assume that the thermal conductivity of $\Omega_2$ is small either in all directions or at least in the direction normal to $\partial\Omega_1$ (the case of "optimally aligned coating"). We study the asymptotic behavior of Robin eigenpairs as outcome of the interplay of the thermal tensor $A$, the thickness of $\Omega_2$ and the thermal transport coefficient in the Robin boundary condition, in the singular limit when either the thermal conductivity of $\Omega_2$, or the thickness of $\Omega_2$, or the thermal transport coefficient approaches $0$. By doing so, we identify the parameter ranges in which some or all of (A)-(C) occur.
Citation: Guojing Zhang, Steve Rosencrans, Xuefeng Wang, Kaijun Zhang. Estimating thermal insulating ability of anisotropic coatings via Robin eigenvalues and eigenfunctions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 1061-1079. doi: 10.3934/dcds.2009.25.1061
  Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075  Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137  Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242  Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251  Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253  Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384  Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453  Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031  Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171  Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056  Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340  Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351  Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348  Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052  Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

2019 Impact Factor: 1.338