Advanced Search
Article Contents
Article Contents

On the long-time limit of positive solutions to the degenerate logistic equation

Abstract Related Papers Cited by
  • We study the long-time behavior of positive solutions to the problem

    $u_t-\Delta u=a u-b(x)u^p \mbox{ in } (0,\infty)\times \Omega, Bu=0 \mbox{ on } (0,\infty)\times \partial \Omega, $

    where $a$ is a real parameter, $b\geq 0$ is in $C^\mu(\bar{\Omega})$ and $p>1$ is a constant, $\Omega$ is a $C^{2+\mu}$ bounded domain in $R^N$ ($N\geq 2$), the boundary operator $B$ is of the standard Dirichlet, Neumann or Robyn type. Under the assumption that $\overline\Omega_0$:=$\{x\in\Omega: b(x)=0\}$ has non-empty interior, is connected, has smooth boundary and is contained in $\Omega$, it is shown in [8] that when $a\geq \lambda_1^D(\Omega_0)$, for any fixed $x\in \overline{\Omega}_0$, $\overline{\lim}_{t\to\infty}u(t,x)$=$\infty$, and for any fixed $x\in \overline{\Omega}\setminus \overline{\Omega}_0$,

    $\overline{\lim}_{t\to\infty}u(t,x)\leq \overline{U}_a(x), \underline{\lim}_{t\to\infty}u(t,x)\geq \underline{U}_a(x),

    where $\underline{U}_a$ and $\overline{U}_a$ denote respectively the minimal and maximal positive solutions of the boundary blow-up problem

    $-\Delta u=au-b(x)u^p \mbox{ in} \ \Omega\setminus\overline{\Omega}_0,\ Bu=0 \mbox{ on}\ \partial \Omega,\ \ u=\infty \mbox{ on}\ \partial \Omega_0.$

    The main purpose of this paper is to show that, under the above assumptions,

    $\lim_{t\to\infty} u(t,x)=\underline U_a(x),\forall x\in \overline\Omega\setminus \overline\Omega_0.$

    This proves a conjecture stated in [8]. Some extensions of this result are also discussed.

    Mathematics Subject Classification: Primary: 35K15; Secondary 35K55.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(120) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint