-
Previous Article
Singular travelling waves in a model for tumour encapsulation
- DCDS Home
- This Issue
-
Next Article
Energy estimates for electro-reaction-diffusion systems with partly fast kinetics
A mathematical model of blood coagulation induced by activation sources
1. | National Research Centre for Haematology, 125167 Moscow, Russian Federation, Russian Federation |
2. | Departamento de Matemática Aplicada, Facultad de Matemáticas, Universidad Complutense, 28040 Madrid, Spain |
[1] |
Grzegorz Karch, Kanako Suzuki, Jacek Zienkiewicz. Finite-time blowup of solutions to some activator-inhibitor systems. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4997-5010. doi: 10.3934/dcds.2016016 |
[2] |
Marie Henry. Singular limit of an activator-inhibitor type model. Networks and Heterogeneous Media, 2012, 7 (4) : 781-803. doi: 10.3934/nhm.2012.7.781 |
[3] |
Huiqiang Jiang. Global existence of solutions of an activator-inhibitor system. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 737-751. doi: 10.3934/dcds.2006.14.737 |
[4] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[5] |
Shaohua Chen. Some properties for the solutions of a general activator-inhibitor model. Communications on Pure and Applied Analysis, 2006, 5 (4) : 919-928. doi: 10.3934/cpaa.2006.5.919 |
[6] |
Xiaoli Wang, Guohong Zhang. Bifurcation analysis of a general activator-inhibitor model with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4459-4477. doi: 10.3934/dcdsb.2020295 |
[7] |
Victor Ogesa Juma, Leif Dehmelt, Stéphanie Portet, Anotida Madzvamuse. A mathematical analysis of an activator-inhibitor Rho GTPase model. Journal of Computational Dynamics, 2022, 9 (2) : 133-158. doi: 10.3934/jcd.2021024 |
[8] |
Miguel A. Herrero, Marianito R. Rodrigo. Remarks on accessible steady states for some coagulation-fragmentation systems. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 541-552. doi: 10.3934/dcds.2007.17.541 |
[9] |
Maxime Breden. Applications of improved duality lemmas to the discrete coagulation-fragmentation equations with diffusion. Kinetic and Related Models, 2018, 11 (2) : 279-301. doi: 10.3934/krm.2018014 |
[10] |
Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126 |
[11] |
Jacek Banasiak. Global solutions of continuous coagulation–fragmentation equations with unbounded coefficients. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3319-3334. doi: 10.3934/dcdss.2020161 |
[12] |
Iñigo U. Erneta. Well-posedness for boundary value problems for coagulation-fragmentation equations. Kinetic and Related Models, 2020, 13 (4) : 815-835. doi: 10.3934/krm.2020028 |
[13] |
Ankik Kumar Giri. On the uniqueness for coagulation and multiple fragmentation equation. Kinetic and Related Models, 2013, 6 (3) : 589-599. doi: 10.3934/krm.2013.6.589 |
[14] |
Jacek Banasiak. Transport processes with coagulation and strong fragmentation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 445-472. doi: 10.3934/dcdsb.2012.17.445 |
[15] |
Adélia Sequeira, Rafael F. Santos, Tomáš Bodnár. Blood coagulation dynamics: mathematical modeling and stability results. Mathematical Biosciences & Engineering, 2011, 8 (2) : 425-443. doi: 10.3934/mbe.2011.8.425 |
[16] |
Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563 |
[17] |
Pierre Degond, Maximilian Engel. Numerical approximation of a coagulation-fragmentation model for animal group size statistics. Networks and Heterogeneous Media, 2017, 12 (2) : 217-243. doi: 10.3934/nhm.2017009 |
[18] |
Jacek Banasiak, Luke O. Joel, Sergey Shindin. The discrete unbounded coagulation-fragmentation equation with growth, decay and sedimentation. Kinetic and Related Models, 2019, 12 (5) : 1069-1092. doi: 10.3934/krm.2019040 |
[19] |
Wilson Lamb, Adam McBride, Louise Smith. Coagulation and fragmentation processes with evolving size and shape profiles: A semigroup approach. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5177-5187. doi: 10.3934/dcds.2013.33.5177 |
[20] |
Prasanta Kumar Barik, Ankik Kumar Giri. A note on mass-conserving solutions to the coagulation-fragmentation equation by using non-conservative approximation. Kinetic and Related Models, 2018, 11 (5) : 1125-1138. doi: 10.3934/krm.2018043 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]