
Previous Article
Long time convergence for a class of variational phasefield models
 DCDS Home
 This Issue

Next Article
On the retention of the interfaces in some elliptic and parabolic nonlinear problems
Reactiondiffusion equations for population dynamics with forced speed II  cylindricaltype domains
1.  EHESS, CAMS, 54 Boulevard Raspail, F75006, Paris 
$\partial_t u=\Delta u+f(xcte,u),\qquad t>0,\quad x\in\R^N,$
where $e\in S^{N1}$ and $c>0$ are given and $f(x,s)$ satisfies
some usual assumptions in population dynamics, together with
$f_s(x,0)<0$ for $x$ large. The interest for such equation comes
from an ecological model introduced in [1]
describing the effects of global
warming on biological species. In [6],we proved that
existence and uniqueness of travelling wave solutions of the type
$u(x,t)=U(xcte)$ and the large time behaviour of solutions with
arbitrary nonnegative bounded initial datum depend on the sign of
the generalized principal in $\R^N$ of an associated linear operator.
Here, we establish analogous results for the Neumann problem in
domains which are asymptotically cylindrical, as well as for the problem in
the whole space with $f$ periodic in some space variables,
orthogonal to the direction of the shift $e$.
The $L^1$ convergence of solution $u(t,x)$ as $t\to\infty$ is established
next. In this paper, we also show
that a bifurcation from the zero solution takes place as the principal crosses $0$. We are
able to describe the shape of solutions close to extinction
thus answering a question raised by M.~Mimura.
These two results are new even in the framework
considered in [6].
Another type of problem is obtained by adding to the previous one a term
$g(xc'te,u)$ periodic in $x$ in the direction $e$.
Such a model arises when considering
environmental change on two different scales.
Lastly, we also solve the case of an equation
$\partial_t u=\Delta u+f(t,xcte,u),$
when $f(t,x,s)$ is periodic in $t$. This for instance represents the seasonal dependence of $f$. In both cases, we obtain a necessary and sufficient condition for the existence, uniqueness and stability of pulsating travelling waves, which are solutions with a profile which is periodic in time.
[1] 
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of nonautonomous stochastic reactiondiffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 53675386. doi: 10.3934/cpaa.2020242 
[2] 
Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reactiondiffusion cholera model. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020316 
[3] 
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reactiondiffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020321 
[4] 
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reactiondiffusion equation. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020319 
[5] 
H. M. Srivastava, H. I. AbdelGawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a twocell cubic autocatalytic reactiondiffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020433 
[6] 
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic FisherKPP equations. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020323 
[7] 
Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Timefractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 257275. doi: 10.3934/dcds.2020137 
[8] 
Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a twotimescale ecosystem. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020342 
[9] 
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 56095626. doi: 10.3934/cpaa.2020256 
[10] 
Fioralba Cakoni, PuZhao Kow, JennNan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : . doi: 10.3934/ipi.2020075 
[11] 
PierreEtienne Druet. A theory of generalised solutions for ideal gas mixtures with MaxwellStefan diffusion. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020458 
[12] 
Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitarywave solutions of BenjaminOno and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 87111. doi: 10.3934/dcds.2020215 
[13] 
Omid Nikan, Seyedeh Mahboubeh MolaviArabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized longwave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020466 
[14] 
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advectiondiffusion equation using Genocchi operational matrix based on AtanganaBaleanu derivative. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020435 
[15] 
HaiFeng Huo, ShiKe Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with selfprotection and treatment. Electronic Research Archive, , () : . doi: 10.3934/era.2020118 
[16] 
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 455469. doi: 10.3934/dcds.2020380 
[17] 
Hua Qiu, ZhengAn Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 13751393. doi: 10.3934/era.2020073 
[18] 
Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 2960. doi: 10.3934/dcds.2020297 
[19] 
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 471487. doi: 10.3934/dcds.2020264 
[20] 
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : . doi: 10.3934/cpaa.2020272 
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]