-
Previous Article
A variational inequality in Bean's model for superconductors with displacement current
- DCDS Home
- This Issue
-
Next Article
Perturbations of quadratic centers of genus one
Holomorphic foliations transverse to manifolds with corners
1. | Department of Natural Science - Ryukoku University, Fushimi-Ku, Kyoto 612, Japan |
2. | Instituto de Matemática, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, 21.945-970, Rio de Janeiro, RJ |
[1] |
Laurence Halpern, Jeffrey Rauch. Hyperbolic boundary value problems with trihedral corners. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4403-4450. doi: 10.3934/dcds.2016.36.4403 |
[2] |
Aimin Huang, Roger Temam. The linear hyperbolic initial and boundary value problems in a domain with corners. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1627-1665. doi: 10.3934/dcdsb.2014.19.1627 |
[3] |
Yong Fang, Patrick Foulon, Boris Hasselblatt. Longitudinal foliation rigidity and Lipschitz-continuous invariant forms for hyperbolic flows. Electronic Research Announcements, 2010, 17: 80-89. doi: 10.3934/era.2010.17.80 |
[4] |
Doris Bohnet. Codimension-1 partially hyperbolic diffeomorphisms with a uniformly compact center foliation. Journal of Modern Dynamics, 2013, 7 (4) : 565-604. doi: 10.3934/jmd.2013.7.565 |
[5] |
Marco Zambon. Holonomy transformations for Lie subalgebroids. Journal of Geometric Mechanics, 2021, 13 (3) : 517-532. doi: 10.3934/jgm.2021016 |
[6] |
Luis Vega. The dynamics of vortex filaments with corners. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1581-1601. doi: 10.3934/cpaa.2015.14.1581 |
[7] |
M. Jotz. The leaf space of a multiplicative foliation. Journal of Geometric Mechanics, 2012, 4 (3) : 313-332. doi: 10.3934/jgm.2012.4.313 |
[8] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[9] |
Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481 |
[10] |
Carlos Cabrera, Peter Makienko, Peter Plaumann. Semigroup representations in holomorphic dynamics. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1333-1349. doi: 10.3934/dcds.2013.33.1333 |
[11] |
Percy Fernández-Sánchez, Jorge Mozo-Fernández, Hernán Neciosup. Dicritical nilpotent holomorphic foliations. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3223-3237. doi: 10.3934/dcds.2018140 |
[12] |
Eric Bedford, Serge Cantat, Kyounghee Kim. Pseudo-automorphisms with no invariant foliation. Journal of Modern Dynamics, 2014, 8 (2) : 221-250. doi: 10.3934/jmd.2014.8.221 |
[13] |
John Erik Fornæss. Periodic points of holomorphic twist maps. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1047-1056. doi: 10.3934/dcds.2005.13.1047 |
[14] |
Jeffrey J. Early, Juha Pohjanpelto, Roger M. Samelson. Group foliation of equations in geophysical fluid dynamics. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1571-1586. doi: 10.3934/dcds.2010.27.1571 |
[15] |
José Santana Campos Costa, Fernando Micena. Pathological center foliation with dimension greater than one. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1049-1070. doi: 10.3934/dcds.2019044 |
[16] |
David DeLatte. Diophantine conditions for the linearization of commuting holomorphic functions. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 317-332. doi: 10.3934/dcds.1997.3.317 |
[17] |
Kingshook Biswas. Complete conjugacy invariants of nonlinearizable holomorphic dynamics. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 847-856. doi: 10.3934/dcds.2010.26.847 |
[18] |
Marco Abate, Francesca Tovena. Formal normal forms for holomorphic maps tangent to the identity. Conference Publications, 2005, 2005 (Special) : 1-10. doi: 10.3934/proc.2005.2005.1 |
[19] |
Marco Abate, Jasmin Raissy. Formal Poincaré-Dulac renormalization for holomorphic germs. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1773-1807. doi: 10.3934/dcds.2013.33.1773 |
[20] |
Eugen Mihailescu, Mariusz Urbański. Holomorphic maps for which the unstable manifolds depend on prehistories. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 443-450. doi: 10.3934/dcds.2003.9.443 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]