-
Previous Article
Generating functions for Hopf bifurcation with $ S_n$-symmetry
- DCDS Home
- This Issue
-
Next Article
Minimal dynamical systems on a discrete valuation domain
Energy decay rates of magnetoelastic waves in a bounded conductive medium
1. | Department of Mathematics, Federal University of Santa Catarina, CEP 88040-900, Florianópolis, SC, Brazil, Brazil |
2. | National Laboratory of Scientific Computation, LNCC/MCT, Av. Getulio Vargas 333, Quitandinha, Petrópolis, RJ, 25651-070, Brazil |
[1] |
Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control & Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251 |
[2] |
Aníbal Rodríguez-Bernal, Enrique Zuazua. Parabolic singular limit of a wave equation with localized boundary damping. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 303-346. doi: 10.3934/dcds.1995.1.303 |
[3] |
Louis Tebou. Stabilization of some elastodynamic systems with localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7117-7136. doi: 10.3934/dcds.2016110 |
[4] |
Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459 |
[5] |
Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021 |
[6] |
Takeshi Taniguchi. Exponential boundary stabilization for nonlinear wave equations with localized damping and nonlinear boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1571-1585. doi: 10.3934/cpaa.2017075 |
[7] |
Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029 |
[8] |
Shitao Liu, Roberto Triggiani. Recovering damping and potential coefficients for an inverse non-homogeneous second-order hyperbolic problem via a localized Neumann boundary trace. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5217-5252. doi: 10.3934/dcds.2013.33.5217 |
[9] |
Mina Jiang, Changjiang Zhu. Convergence rates to nonlinear diffusion waves for $p$-system with nonlinear damping on quadrant. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 887-918. doi: 10.3934/dcds.2009.23.887 |
[10] |
Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707 |
[11] |
Nan Lu. Non-localized standing waves of the hyperbolic cubic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3533-3567. doi: 10.3934/dcds.2015.35.3533 |
[12] |
Martin Kružík, Ulisse Stefanelli, Chiara Zanini. Quasistatic evolution of magnetoelastic plates via dimension reduction. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5999-6013. doi: 10.3934/dcds.2015.35.5999 |
[13] |
Bastian Gebauer. Localized potentials in electrical impedance tomography. Inverse Problems & Imaging, 2008, 2 (2) : 251-269. doi: 10.3934/ipi.2008.2.251 |
[14] |
Vassilis Rothos. Subharmonic bifurcations of localized solutions of a discrete NLS equation. Conference Publications, 2005, 2005 (Special) : 756-767. doi: 10.3934/proc.2005.2005.756 |
[15] |
Bo Tan, Bao-Wei Wang, Jun Wu, Jian Xu. Localized Birkhoff average in beta dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2547-2564. doi: 10.3934/dcds.2013.33.2547 |
[16] |
Julien Barral, Yan-Hui Qu. Localized asymptotic behavior for almost additive potentials. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 717-751. doi: 10.3934/dcds.2012.32.717 |
[17] |
Panayotis Panayotaros, Felipe Rivero. Multistability and localized attractors in a dissipative discrete NLS equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1137-1154. doi: 10.3934/dcdsb.2014.19.1137 |
[18] |
Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i |
[19] |
Jean-Paul Chehab, Georges Sadaka. On damping rates of dissipative KdV equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1487-1506. doi: 10.3934/dcdss.2013.6.1487 |
[20] |
Miroslav Grmela, Michal Pavelka. Landau damping in the multiscale Vlasov theory. Kinetic & Related Models, 2018, 11 (3) : 521-545. doi: 10.3934/krm.2018023 |
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]