September  2009, 25(3): 797-821. doi: 10.3934/dcds.2009.25.797

Energy decay rates of magnetoelastic waves in a bounded conductive medium

1. 

Department of Mathematics, Federal University of Santa Catarina, CEP 88040-900, Florianópolis, SC, Brazil, Brazil

2. 

National Laboratory of Scientific Computation, LNCC/MCT, Av. Getulio Vargas 333, Quitandinha, Petrópolis, RJ, 25651-070, Brazil

Received  September 2008 Revised  June 2009 Published  August 2009

We consider a coupled system of evolution equations modeling the propagation of elastic waves interacting with a magnetic field in a bounded simply connected region of $\mathbb{R}^3$ with boundary of class $C^2$. A nonlinear dissipative mechanism is allowed to be effective in an small subregion of $\Omega$. We prove that the total energy decays as $t \to +\infty$.
Citation: Ruy Coimbra Charão, Jáuber Cavalcante Oliveira, Gustavo Alberto Perla Menzala. Energy decay rates of magnetoelastic waves in a bounded conductive medium. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 797-821. doi: 10.3934/dcds.2009.25.797
[1]

Zayd Hajjej, Mohammad Al-Gharabli, Salim Messaoudi. Stability of a suspension bridge with a localized structural damping. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021089

[2]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control & Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

[3]

To Fu Ma, Paulo Nicanor Seminario-Huertas. Attractors for semilinear wave equations with localized damping and external forces. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2219-2233. doi: 10.3934/cpaa.2020097

[4]

Aníbal Rodríguez-Bernal, Enrique Zuazua. Parabolic singular limit of a wave equation with localized boundary damping. Discrete & Continuous Dynamical Systems, 1995, 1 (3) : 303-346. doi: 10.3934/dcds.1995.1.303

[5]

Louis Tebou. Stabilization of some elastodynamic systems with localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 7117-7136. doi: 10.3934/dcds.2016110

[6]

Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete & Continuous Dynamical Systems, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459

[7]

Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021

[8]

Takeshi Taniguchi. Exponential boundary stabilization for nonlinear wave equations with localized damping and nonlinear boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1571-1585. doi: 10.3934/cpaa.2017075

[9]

Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029

[10]

Roger P. de Moura, Ailton C. Nascimento, Gleison N. Santos. On the stabilization for the high-order Kadomtsev-Petviashvili and the Zakharov-Kuznetsov equations with localized damping. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021022

[11]

Mina Jiang, Changjiang Zhu. Convergence rates to nonlinear diffusion waves for $p$-system with nonlinear damping on quadrant. Discrete & Continuous Dynamical Systems, 2009, 23 (3) : 887-918. doi: 10.3934/dcds.2009.23.887

[12]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020050

[13]

Shitao Liu, Roberto Triggiani. Recovering damping and potential coefficients for an inverse non-homogeneous second-order hyperbolic problem via a localized Neumann boundary trace. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5217-5252. doi: 10.3934/dcds.2013.33.5217

[14]

Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707

[15]

Nan Lu. Non-localized standing waves of the hyperbolic cubic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3533-3567. doi: 10.3934/dcds.2015.35.3533

[16]

Martin Kružík, Ulisse Stefanelli, Chiara Zanini. Quasistatic evolution of magnetoelastic plates via dimension reduction. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5999-6013. doi: 10.3934/dcds.2015.35.5999

[17]

Zengji Du, Xiaojie Lin, Yulin Ren. Dynamics of solitary waves and periodic waves for a generalized KP-MEW-Burgers equation with damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021118

[18]

Bochao Chen, Yixian Gao. Quasi-periodic travelling waves for beam equations with damping on 3-dimensional rectangular tori. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021075

[19]

Bastian Gebauer. Localized potentials in electrical impedance tomography. Inverse Problems & Imaging, 2008, 2 (2) : 251-269. doi: 10.3934/ipi.2008.2.251

[20]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (7)

[Back to Top]