September  2009, 25(3): 869-882. doi: 10.3934/dcds.2009.25.869

Acoustic limit of the Boltzmann equation: Classical solutions

1. 

Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York City, NY 10012

Received  January 2009 Revised  April 2009 Published  August 2009

We study the acoustic limit from the Boltzmann equation in the framework of classical solutions. For a solution $F_\varepsilon=\mu +\varepsilon \sqrt{\mu}f_\varepsilon$ to the rescaled Boltzmann equation in the acoustic time scaling

$\partial_t F_\varepsilon +\v$•$grad$x$F_\varepsilon =\frac{1}{\varepsilon} \Q(F_\varepsilon,F_\varepsilon)\,$

inside a periodic box $\mathbb{T}^3$, we establish the global-in-time uniform energy estimates of $f_\varepsilon$ in $\varepsilon$ and prove that $f_\varepsilon$ converges strongly to $f$ whose dynamics is governed by the acoustic system. The collision kernel $\Q$ includes hard-sphere interaction and inverse-power law with an angular cutoff.

Citation: Juhi Jang, Ning Jiang. Acoustic limit of the Boltzmann equation: Classical solutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 869-882. doi: 10.3934/dcds.2009.25.869
[1]

Feimin Huang, Yi Wang, Tong Yang. Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic & Related Models, 2010, 3 (4) : 685-728. doi: 10.3934/krm.2010.3.685

[2]

Vincent Giovangigli. Persistence of Boltzmann entropy in fluid models. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 95-114. doi: 10.3934/dcds.2009.24.95

[3]

Ciro D'Apice, Rosanna Manzo. A fluid dynamic model for supply chains. Networks & Heterogeneous Media, 2006, 1 (3) : 379-398. doi: 10.3934/nhm.2006.1.379

[4]

Jérôme Renault. General limit value in dynamic programming. Journal of Dynamics & Games, 2014, 1 (3) : 471-484. doi: 10.3934/jdg.2014.1.471

[5]

Alberto Bressan, Marco Mazzola, Hongxu Wei. A dynamic model of the limit order book. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019206

[6]

Ciprian G. Gal, Maurizio Grasselli. Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1581-1610. doi: 10.3934/dcdsb.2013.18.1581

[7]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[8]

Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1357-1376. doi: 10.3934/cpaa.2015.14.1357

[9]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[10]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[11]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[12]

Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic & Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159

[13]

Marzia Bisi, Giampiero Spiga. A Boltzmann-type model for market economy and its continuous trading limit. Kinetic & Related Models, 2010, 3 (2) : 223-239. doi: 10.3934/krm.2010.3.223

[14]

Jin Ma, Xinyang Wang, Jianfeng Zhang. Dynamic equilibrium limit order book model and optimal execution problem. Mathematical Control & Related Fields, 2015, 5 (3) : 557-583. doi: 10.3934/mcrf.2015.5.557

[15]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Dynamic boundary conditions as limit of singularly perturbed parabolic problems. Conference Publications, 2011, 2011 (Special) : 737-746. doi: 10.3934/proc.2011.2011.737

[16]

Angelo Morro. Nonlinear diffusion equations in fluid mixtures. Evolution Equations & Control Theory, 2016, 5 (3) : 431-448. doi: 10.3934/eect.2016012

[17]

Xuwen Chen, Yan Guo. On the weak coupling limit of quantum many-body dynamics and the quantum Boltzmann equation. Kinetic & Related Models, 2015, 8 (3) : 443-465. doi: 10.3934/krm.2015.8.443

[18]

Stéphane Mischler, Clément Mouhot. Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 159-185. doi: 10.3934/dcds.2009.24.159

[19]

Rachel Clipp, Brooke Steele. An evaluation of dynamic outlet boundary conditions in a 1D fluid dynamics model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 61-74. doi: 10.3934/mbe.2012.9.61

[20]

Nicola Zamponi. Some fluid-dynamic models for quantum electron transport in graphene via entropy minimization. Kinetic & Related Models, 2012, 5 (1) : 203-221. doi: 10.3934/krm.2012.5.203

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]