\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Continuity of global attractors for a class of non local evolution equations

Abstract Related Papers Cited by
  • In this work we prove that the global attractors for the flow of the equation

    $\frac{\partial m(r,t)}{\partial t}=-m(r,t)+ g(\beta J $∗$ m(r,t)+ \beta h),\ h ,\ \beta \geq 0,$

    are continuous with respect to the parameters $h$ and $\beta$ if one assumes a property implying normal hyperbolicity for its (families of) equilibria.

    Mathematics Subject Classification: Primary: 34G20; Secondary: 47H15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(84) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return