October  2010, 26(4): 1525-1536. doi: 10.3934/dcds.2010.26.1525

A dual-Petrov-Galerkin method for two integrable fifth-order KdV type equations

1. 

Department of Financial and Computational Mathematics, Providence University, Taichung 43301, Taiwan

2. 

Department of Mathematics, Oklahoma State University, Stillwater, OK 74078

Received  November 2008 Revised  April 2009 Published  December 2009

This paper extends the dual-Petrov-Galerkin method proposed by Shen [21], further developed by Yuan, Shen and Wu [27] to general fifth-order KdV type equations with various nonlinear terms. These fifth-order equations arise in modeling different wave phenomena. The method is implemented to compute the multi-soliton solutions of two representative fifth-order KdV equations: the Kaup-Kupershmidt equation and the Caudry-Dodd-Gibbon equation. The numerical results imply that this scheme is capable of capturing, with very high accuracy, the details of these solutions such as the nonlinear interactions of multi-solitons.
Citation: Juan-Ming Yuan, Jiahong Wu. A dual-Petrov-Galerkin method for two integrable fifth-order KdV type equations. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1525-1536. doi: 10.3934/dcds.2010.26.1525
[1]

Netra Khanal, Ramjee Sharma, Jiahong Wu, Juan-Ming Yuan. A dual-Petrov-Galerkin method for extended fifth-order Korteweg-de Vries type equations. Conference Publications, 2009, 2009 (Special) : 442-450. doi: 10.3934/proc.2009.2009.442

[2]

Marina Chugunova, Dmitry Pelinovsky. Two-pulse solutions in the fifth-order KdV equation: Rigorous theory and numerical approximations. Discrete and Continuous Dynamical Systems - B, 2007, 8 (4) : 773-800. doi: 10.3934/dcdsb.2007.8.773

[3]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

[4]

Jie Shen, Li-Lian Wang. Laguerre and composite Legendre-Laguerre Dual-Petrov-Galerkin methods for third-order equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1381-1402. doi: 10.3934/dcdsb.2006.6.1381

[5]

Shan Li, Shi-Mi Yan, Zhong-Qing Wang. Efficient Legendre dual-Petrov-Galerkin methods for odd-order differential equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1543-1563. doi: 10.3934/dcdsb.2019239

[6]

Torsten Keßler, Sergej Rjasanow. Fully conservative spectral Galerkin–Petrov method for the inhomogeneous Boltzmann equation. Kinetic and Related Models, 2019, 12 (3) : 507-549. doi: 10.3934/krm.2019021

[7]

Jingwei Hu, Jie Shen, Yingwei Wang. A Petrov-Galerkin spectral method for the inelastic Boltzmann equation using mapped Chebyshev functions. Kinetic and Related Models, 2020, 13 (4) : 677-702. doi: 10.3934/krm.2020023

[8]

Benjamin Dodson, Cristian Gavrus. Instability of the soliton for the focusing, mass-critical generalized KdV equation. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1767-1799. doi: 10.3934/dcds.2021171

[9]

Márcio Cavalcante, Chulkwang Kwak. Local well-posedness of the fifth-order KdV-type equations on the half-line. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2607-2661. doi: 10.3934/cpaa.2019117

[10]

Jeongwhan Choi, Shu-Ming Sun, Sungim Whang. On solitary-wave solutions of fifth-order KdV type of model equations for water waves. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022146

[11]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[12]

Weipeng Hu, Zichen Deng, Yuyue Qin. Multi-symplectic method to simulate Soliton resonance of (2+1)-dimensional Boussinesq equation. Journal of Geometric Mechanics, 2013, 5 (3) : 295-318. doi: 10.3934/jgm.2013.5.295

[13]

Pedro Isaza, Juan López, Jorge Mejía. Cauchy problem for the fifth order Kadomtsev-Petviashvili (KPII) equation. Communications on Pure and Applied Analysis, 2006, 5 (4) : 887-905. doi: 10.3934/cpaa.2006.5.887

[14]

M. A. Christou, C. I. Christov. Fourier-Galerkin method for localized solutions of the Sixth-Order Generalized Boussinesq Equation. Conference Publications, 2001, 2001 (Special) : 121-130. doi: 10.3934/proc.2001.2001.121

[15]

Qiyi Gao, Hua Wu. Legendre-Petrov-Galerkin Chebyshev spectral collocation method for second-order nonlinear differential equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022166

[16]

Jundong Wang, Lijun Zhang, Elena Shchepakina, Vladimir Sobolev. Solitary waves of singularly perturbed generalized KdV equation with high order nonlinearity. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022124

[17]

Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic and Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139

[18]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[19]

Juan-Ming Yuan, Jiahong Wu. The complex KdV equation with or without dissipation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 489-512. doi: 10.3934/dcdsb.2005.5.489

[20]

Ruizhi Gong, Yuren Shi, Deng-Shan Wang. Linear stability of exact solutions for the generalized Kaup-Boussinesq equation and their dynamical evolutions. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3355-3378. doi: 10.3934/dcds.2022018

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]