April  2010, 26(2): 521-549. doi: 10.3934/dcds.2010.26.521

Long time behavior for the inhomogeneous PME in a medium with rapidly decaying density

1. 

School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel

2. 

Departamento de Matemática Aplicada, E.T.S.I. de Caminos, Canales y Puertos, Universidad Politécnica de Madrid. 28040 Madrid

3. 

Departamento de Matemáticas and ICMAT. Universidad Autónoma de Madrid, Cantoblanco. 28049 Madrid, Spain

Received  March 2009 Revised  June 2009 Published  October 2009

We study the long-time behavior of nonnegative solutions to the Cauchy problem

$ \rho(x)\, \partial_t u= \Delta u^m $ in $Q$:$=\mathbb{R}^N\times\mathbb{R}_+$
$u(x, 0)=u_0 $ in $\mathbb{R}^N$

in dimensions $ N\ge 3$. We assume that $ m> 1 $ and $ \rho(x) $ is positive and bounded with $ \rho(x)\le C|x|^{-\gamma} $ as $ |x|\to\infty$ with $\gamma>2$. The initial data $u_0$ are nonnegative and have finite energy, i.e., $ \int \rho(x)u_0 dx< \infty$.
   We show that in this case nontrivial solutions to the problem have a long-time universal behavior in separate variables of the form

$u(x,t)$~$ t^{-1/(m-1)}W(x),$

where $V=W^m$ is the unique bounded, positive solution of the sublinear elliptic equation $-\Delta V=c\,\rho(x)V^{1/m}$, in $\mathbb{R}^N$ vanishing as $|x|\to\infty$; $c=1/(m-1)$. Such a behavior of $u$ is typical of Dirichlet problems on bounded domains with zero boundary data. It strongly departs from the behavior in the case of slowly decaying densities, $\rho(x)$~$ |x|^{-\gamma}$ as $|x|\to\infty$ with 0 ≤ $ \gamma<2$, previously studied by the authors.
   If $\rho(x)$ has an intermediate decay, $\rho$~$ |x|^{-\gamma}$ as $|x|\to\infty$ with $2<\gamma<\gamma_2$:$=N-(N-2)/m$, solutions still enjoy the finite propagation property (as in the case of lower $\gamma$). In this range a more precise description may be given at the diffusive scale in terms of source-type solutions $U(x,t)$ of the related singular equation $|x|^{-\gamma}u_t= \Delta u^m$. Thus in this range we have two different space-time scales in which the behavior of solutions is non-trivial. The corresponding results complement each other and agree in the intermediate region where both apply, thus providing an example of matched asymptotics.

Citation: Shoshana Kamin, Guillermo Reyes, Juan Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with rapidly decaying density. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 521-549. doi: 10.3934/dcds.2010.26.521
[1]

Mohammad Asadzadeh, Anders Brahme, Jiping Xin. Galerkin methods for primary ion transport in inhomogeneous media. Kinetic & Related Models, 2010, 3 (3) : 373-394. doi: 10.3934/krm.2010.3.373

[2]

D. G. Aronson, N. V. Mantzaris, Hans Othmer. Wave propagation and blocking in inhomogeneous media. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 843-876. doi: 10.3934/dcds.2005.13.843

[3]

Mario Ohlberger, Ben Schweizer. Modelling of interfaces in unsaturated porous media. Conference Publications, 2007, 2007 (Special) : 794-803. doi: 10.3934/proc.2007.2007.794

[4]

Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks & Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337

[5]

Fioralba Cakoni, Anne Cossonnière, Houssem Haddar. Transmission eigenvalues for inhomogeneous media containing obstacles. Inverse Problems & Imaging, 2012, 6 (3) : 373-398. doi: 10.3934/ipi.2012.6.373

[6]

Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644

[7]

Leda Bucciantini, Angiolo Farina, Antonio Fasano. Flows in porous media with erosion of the solid matrix. Networks & Heterogeneous Media, 2010, 5 (1) : 63-95. doi: 10.3934/nhm.2010.5.63

[8]

Cedric Galusinski, Mazen Saad. Water-gas flow in porous media. Conference Publications, 2005, 2005 (Special) : 307-316. doi: 10.3934/proc.2005.2005.307

[9]

Ioana Ciotir. Stochastic porous media equations with divergence Itô noise. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020010

[10]

Sofía Nieto, Guillermo Reyes. Asymptotic behavior of the solutions of the inhomogeneous Porous Medium Equation with critical vanishing density. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1123-1139. doi: 10.3934/cpaa.2013.12.1123

[11]

Fioralba Cakoni, Shari Moskow, Scott Rome. The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions. Inverse Problems & Imaging, 2015, 9 (3) : 725-748. doi: 10.3934/ipi.2015.9.725

[12]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks & Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897

[13]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks & Heterogeneous Media, 2013, 8 (4) : 1009-1034. doi: 10.3934/nhm.2013.8.1009

[14]

Martial Agueh, Guillaume Carlier, Reinhard Illner. Remarks on a class of kinetic models of granular media: Asymptotics and entropy bounds. Kinetic & Related Models, 2015, 8 (2) : 201-214. doi: 10.3934/krm.2015.8.201

[15]

S. Bonafede, G. R. Cirmi, A.F. Tedeev. Finite speed of propagation for the porous media equation with lower order terms. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 305-314. doi: 10.3934/dcds.2000.6.305

[16]

Youcef Amirat, Laurent Chupin, Rachid Touzani. Weak solutions to the equations of stationary magnetohydrodynamic flows in porous media. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2445-2464. doi: 10.3934/cpaa.2014.13.2445

[17]

Cédric Galusinski, Mazen Saad. A nonlinear degenerate system modelling water-gas flows in porous media. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 281-308. doi: 10.3934/dcdsb.2008.9.281

[18]

Ting Zhang. The modeling error of well treatment for unsteady flow in porous media. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2171-2185. doi: 10.3934/dcdsb.2015.20.2171

[19]

T. L. van Noorden, I. S. Pop, M. Röger. Crystal dissolution and precipitation in porous media: L$^1$-contraction and uniqueness. Conference Publications, 2007, 2007 (Special) : 1013-1020. doi: 10.3934/proc.2007.2007.1013

[20]

Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (3)

[Back to Top]