Advanced Search
Article Contents
Article Contents

The real jacobian conjecture on $\R^2$ is true when one of the components has degree 3

Abstract Related Papers Cited by
  • Let $F:\R^2\to \R^2$, $F=(p,q)$, be a polynomial mapping such that $\det DF$ never vanishes. In this paper it is shown that if either $p$ or $q$ has degree less or equal 3, then $F$ is injective. The technique relates solvability of appropriate vector fields with injectivity of the mapping.
    Mathematics Subject Classification: Primary: 14R15; Secondary: 35F05, 35A30.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(90) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint