# American Institute of Mathematical Sciences

September  2010, 26(3): 857-871. doi: 10.3934/dcds.2010.26.857

## Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise

 1 Centre de Mathématiques Appliquées, UMR 7641 CNRS/Ecole Polytechnique, 91128 Palaiseau cedex, France 2 ENSAE-CREST, 3 avenue Pierre Larousse, 92245 Malakoff Cedex, France

Received  April 2008 Revised  August 2009 Published  December 2009

We consider two exit problems for the Korteweg-de Vries equation perturbed by an additive white in time and colored in space noise of amplitude $\epsilon$. The initial datum gives rise to a soliton when $\epsilon=0$. It has been proved recently that the solution remains in a neighborhood of a randomly modulated soliton for times at least of the order of $\epsilon^{-2}$. We prove exponential upper and lower bounds for the small noise limit of the probability that the exit time from a neighborhood of this randomly modulated soliton is less than $T$, of the same order in $\epsilon$ and $T$. We obtain that the time scale is exactly the right one. We also study the similar probability for the exit from a neighborhood of the deterministic soliton solution. We are able to quantify the gain of eliminating the secular modes to better describe the persistence of the soliton.
Citation: Anne de Bouard, Eric Gautier. Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise. Discrete & Continuous Dynamical Systems, 2010, 26 (3) : 857-871. doi: 10.3934/dcds.2010.26.857
 [1] Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255 [2] John P. Albert. A uniqueness result for 2-soliton solutions of the Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 3635-3670. doi: 10.3934/dcds.2019149 [3] Eduardo Cerpa. Control of a Korteweg-de Vries equation: A tutorial. Mathematical Control & Related Fields, 2014, 4 (1) : 45-99. doi: 10.3934/mcrf.2014.4.45 [4] M. Agrotis, S. Lafortune, P.G. Kevrekidis. On a discrete version of the Korteweg-De Vries equation. Conference Publications, 2005, 2005 (Special) : 22-29. doi: 10.3934/proc.2005.2005.22 [5] Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761 [6] Muhammad Usman, Bing-Yu Zhang. Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1509-1523. doi: 10.3934/dcds.2010.26.1509 [7] Eduardo Cerpa, Emmanuelle Crépeau. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 655-668. doi: 10.3934/dcdsb.2009.11.655 [8] Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069 [9] Ahmat Mahamat Taboye, Mohamed Laabissi. Exponential stabilization of a linear Korteweg-de Vries equation with input saturation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021052 [10] Eduardo Cerpa, Emmanuelle Crépeau, Julie Valein. Boundary controllability of the Korteweg-de Vries equation on a tree-shaped network. Evolution Equations & Control Theory, 2020, 9 (3) : 673-692. doi: 10.3934/eect.2020028 [11] Ludovick Gagnon. Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1489-1507. doi: 10.3934/dcds.2017061 [12] Roberto A. Capistrano-Filho, Shuming Sun, Bing-Yu Zhang. General boundary value problems of the Korteweg-de Vries equation on a bounded domain. Mathematical Control & Related Fields, 2018, 8 (3&4) : 583-605. doi: 10.3934/mcrf.2018024 [13] Qifan Li. Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1097-1109. doi: 10.3934/cpaa.2012.11.1097 [14] Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure & Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046 [15] Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 [16] Mostafa Abounouh, Hassan Al-Moatassime, Sabah Kaouri. Non-standard boundary conditions for the linearized Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2625-2654. doi: 10.3934/dcdss.2021066 [17] Julie Valein. On the asymptotic stability of the Korteweg-de Vries equation with time-delayed internal feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021039 [18] Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain. Mathematical Control & Related Fields, 2011, 1 (3) : 353-389. doi: 10.3934/mcrf.2011.1.353 [19] Netra Khanal, Ramjee Sharma, Jiahong Wu, Juan-Ming Yuan. A dual-Petrov-Galerkin method for extended fifth-order Korteweg-de Vries type equations. Conference Publications, 2009, 2009 (Special) : 442-450. doi: 10.3934/proc.2009.2009.442 [20] Brian Pigott. Polynomial-in-time upper bounds for the orbital instability of subcritical generalized Korteweg-de Vries equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 389-418. doi: 10.3934/cpaa.2014.13.389

2020 Impact Factor: 1.392

## Metrics

• PDF downloads (88)
• HTML views (0)
• Cited by (3)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]