-
Previous Article
Rotating modes in the Frenkel-Kontorova model with periodic interaction potential
- DCDS Home
- This Issue
-
Next Article
Classes of singular $pq-$Laplacian semipositone systems
Hyperbolicity of $C^1$-stably expansive homoclinic classes
1. | Department of Mathematics, Chungnam National University, Daejeon, 305-764 |
2. | Department of Mathematics, Mokwon University, Daejeon, 302-729, South Korea |
[1] |
Martín Sambarino, José L. Vieitez. On $C^1$-persistently expansive homoclinic classes. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 465-481. doi: 10.3934/dcds.2006.14.465 |
[2] |
Shaobo Gan, Kazuhiro Sakai, Lan Wen. $C^1$ -stably weakly shadowing homoclinic classes admit dominated splittings. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 205-216. doi: 10.3934/dcds.2010.27.205 |
[3] |
Martín Sambarino, José L. Vieitez. Robustly expansive homoclinic classes are generically hyperbolic. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1325-1333. doi: 10.3934/dcds.2009.24.1325 |
[4] |
Keonhee Lee, Kazumine Moriyasu, Kazuhiro Sakai. $C^1$-stable shadowing diffeomorphisms. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 683-697. doi: 10.3934/dcds.2008.22.683 |
[5] |
Woochul Jung, Ngocthach Nguyen, Yinong Yang. Spectral decomposition for rescaling expansive flows with rescaled shadowing. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2267-2283. doi: 10.3934/dcds.2020113 |
[6] |
Flavio Abdenur, Lorenzo J. Díaz. Pseudo-orbit shadowing in the $C^1$ topology. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 223-245. doi: 10.3934/dcds.2007.17.223 |
[7] |
Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1 |
[8] |
Alfonso Artigue. Expansive flows of surfaces. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 505-525. doi: 10.3934/dcds.2013.33.505 |
[9] |
Jorge Groisman. Expansive homeomorphisms of the plane. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 213-239. doi: 10.3934/dcds.2011.29.213 |
[10] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399 |
[11] |
Alfonso Artigue. Lipschitz perturbations of expansive systems. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1829-1841. doi: 10.3934/dcds.2015.35.1829 |
[12] |
Se-Hyun Ku. Expansive flows on uniform spaces. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1585-1598. doi: 10.3934/dcds.2021165 |
[13] |
Keonhee Lee, Arnoldo Rojas. Eventually expansive semiflows. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022102 |
[14] |
S. Yu. Pilyugin, Kazuhiro Sakai, O. A. Tarakanov. Transversality properties and $C^1$-open sets of diffeomorphisms with weak shadowing. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 871-882. doi: 10.3934/dcds.2006.16.871 |
[15] |
Raquel Ribeiro. Hyperbolicity and types of shadowing for $C^1$ generic vector fields. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2963-2982. doi: 10.3934/dcds.2014.34.2963 |
[16] |
Katsutoshi Shinohara. On the index problem of $C^1$-generic wild homoclinic classes in dimension three. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 913-940. doi: 10.3934/dcds.2011.31.913 |
[17] |
Haritha C, Nikita Agarwal. Product of expansive Markov maps with hole. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5743-5774. doi: 10.3934/dcds.2019252 |
[18] |
Alfonso Artigue. Singular cw-expansive flows. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 2945-2956. doi: 10.3934/dcds.2017126 |
[19] |
Yun Yang. Horseshoes for $\mathcal{C}^{1+\alpha}$ mappings with hyperbolic measures. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5133-5152. doi: 10.3934/dcds.2015.35.5133 |
[20] |
Juan Wang, Jing Wang, Yongluo Cao, Yun Zhao. Dimensions of $ C^1- $average conformal hyperbolic sets. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 883-905. doi: 10.3934/dcds.2020065 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]