-
Previous Article
Homoclinic orbits for superlinear Hamiltonian systems without Ambrosetti-Rabinowitz growth condition
- DCDS Home
- This Issue
-
Next Article
Measures of intermediate entropies for skew product diffeomorphisms
On the spatial asymptotics of solutions of the Toda lattice
1. | Faculty of Mathematics, University of Vienna, Nordbergstrasse 15, 1090 Wien |
[1] |
Isaac Alvarez-Romero, Gerald Teschl. On uniqueness properties of solutions of the Toda and Kac-van Moerbeke hierarchies. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2259-2264. doi: 10.3934/dcds.2017098 |
[2] |
Carlos Tomei. The Toda lattice, old and new. Journal of Geometric Mechanics, 2013, 5 (4) : 511-530. doi: 10.3934/jgm.2013.5.511 |
[3] |
Andreas Henrici. Symmetries of the periodic Toda lattice, with an application to normal forms and perturbations of the lattice with Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2949-2977. doi: 10.3934/dcds.2015.35.2949 |
[4] |
Avner Friedman. A hierarchy of cancer models and their mathematical challenges. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 147-159. doi: 10.3934/dcdsb.2004.4.147 |
[5] |
Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779 |
[6] |
Kazuo Aoki, Pierre Charrier, Pierre Degond. A hierarchy of models related to nanoflows and surface diffusion. Kinetic and Related Models, 2011, 4 (1) : 53-85. doi: 10.3934/krm.2011.4.53 |
[7] |
Isabelle Choquet, Pierre Degond, Brigitte Lucquin-Desreux. A hierarchy of diffusion models for partially ionized plasmas. Discrete and Continuous Dynamical Systems - B, 2007, 8 (4) : 735-772. doi: 10.3934/dcdsb.2007.8.735 |
[8] |
Daniel T. Wise. Research announcement: The structure of groups with a quasiconvex hierarchy. Electronic Research Announcements, 2009, 16: 44-55. doi: 10.3934/era.2009.16.44 |
[9] |
Vladimir S. Gerdjikov, Georgi Grahovski, Rossen Ivanov. On the integrability of KdV hierarchy with self-consistent sources. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1439-1452. doi: 10.3934/cpaa.2012.11.1439 |
[10] |
Rossen I. Ivanov. Conformal and Geometric Properties of the Camassa-Holm Hierarchy. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 545-554. doi: 10.3934/dcds.2007.19.545 |
[11] |
Manuel del Pino, Michal Kowalczyk, Juncheng Wei. The Jacobi-Toda system and foliated interfaces. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 975-1006. doi: 10.3934/dcds.2010.28.975 |
[12] |
Zhuchun Li. Effectual leadership in flocks with hierarchy and individual preference. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3683-3702. doi: 10.3934/dcds.2014.34.3683 |
[13] |
Yong Liu, Jing Tian, Xuelin Yong. On the even solutions of the Toda system: A degree argument approach. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1895-1916. doi: 10.3934/cpaa.2021075 |
[14] |
Linlin Dou. Singular solutions of Toda system in high dimensions. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3119-3142. doi: 10.3934/dcds.2022011 |
[15] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[16] |
Iryna Egorova, Johanna Michor, Gerald Teschl. Rarefaction waves for the Toda equation via nonlinear steepest descent. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2007-2028. doi: 10.3934/dcds.2018081 |
[17] |
Paul Fife, Joseph Klewicki, Tie Wei. Time averaging in turbulence settings may reveal an infinite hierarchy of length scales. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 781-807. doi: 10.3934/dcds.2009.24.781 |
[18] |
Anahita Eslami Rad, Enrique G. Reyes. The Kadomtsev-Petviashvili hierarchy and the Mulase factorization of formal Lie groups. Journal of Geometric Mechanics, 2013, 5 (3) : 345-364. doi: 10.3934/jgm.2013.5.345 |
[19] |
Wendai Lv, Siping Ji. Atmospheric environmental quality assessment method based on analytic hierarchy process. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 941-955. doi: 10.3934/dcdss.2019063 |
[20] |
Weiwei Ao. Sharp estimates for fully bubbling solutions of $B_2$ Toda system. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1759-1788. doi: 10.3934/dcds.2016.36.1759 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]