
Previous Article
On universal relations in 2D turbulence
 DCDS Home
 This Issue

Next Article
The vortex core structure inside spherical ferromagnetic particles
Some mathematical problems in a neoclassical theory of electric charges
1.  Department of Mathematics, University of California at Irvine, Irvine, CA 926973875, United States, United States 
[1] 
Anatoli Babin, Alexander Figotin. Newton's law for a trajectory of concentration of solutions to nonlinear Schrodinger equation. Communications on Pure & Applied Analysis, 2014, 13 (5) : 16851718. doi: 10.3934/cpaa.2014.13.1685 
[2] 
Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete & Continuous Dynamical Systems, 2012, 32 (3) : 703715. doi: 10.3934/dcds.2012.32.703 
[3] 
JinMyong An, JinMyong Kim, KyuSong Chae. Continuous dependence of the Cauchy problem for the inhomogeneous nonlinear Schrödinger equation in $H^{s} (\mathbb R^{n})$. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021221 
[4] 
W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 431444. doi: 10.3934/cpaa.2005.4.431 
[5] 
KuanHsiang Wang. An eigenvalue problem for nonlinear SchrödingerPoisson system with steep potential well. Communications on Pure & Applied Analysis, 2021, 20 (4) : 14971519. doi: 10.3934/cpaa.2021030 
[6] 
Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 69436974. doi: 10.3934/dcds.2016102 
[7] 
Phan Van Tin. On the Cauchy problem for a derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021028 
[8] 
D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2002, 8 (3) : 563584. doi: 10.3934/dcds.2002.8.563 
[9] 
Shubin Wang, Guowang Chen. Cauchy problem for the nonlinear SchrödingerIMBq equations. Discrete & Continuous Dynamical Systems  B, 2006, 6 (1) : 203214. doi: 10.3934/dcdsb.2006.6.203 
[10] 
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear SchrödingerMaxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 12671279. doi: 10.3934/cpaa.2011.10.1267 
[11] 
Jibin Li, Yan Zhou. Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourthorder dispersion and dual power law nonlinearity. Discrete & Continuous Dynamical Systems  S, 2020, 13 (11) : 30833097. doi: 10.3934/dcdss.2020113 
[12] 
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems  B, 2021, 26 (5) : 24292440. doi: 10.3934/dcdsb.2020185 
[13] 
Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159179. doi: 10.3934/ipi.2007.1.159 
[14] 
Pavel I. Naumkin, Isahi SánchezSuárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2011, 30 (3) : 807834. doi: 10.3934/dcds.2011.30.807 
[15] 
Tarek Saanouni. Remarks on the damped nonlinear Schrödinger equation. Evolution Equations & Control Theory, 2020, 9 (3) : 721732. doi: 10.3934/eect.2020030 
[16] 
Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 15711601. doi: 10.3934/cpaa.2016003 
[17] 
Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 10631079. doi: 10.3934/cpaa.2012.11.1063 
[18] 
Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems  B, 2002, 2 (1) : 109128. doi: 10.3934/dcdsb.2002.2.109 
[19] 
Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2012, 1 (2) : 337354. doi: 10.3934/eect.2012.1.337 
[20] 
Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 39733984. doi: 10.3934/dcds.2021024 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]