-
Previous Article
A fully nonlinear equation for the flame front in a quasi-steady combustion model
- DCDS Home
- This Issue
-
Next Article
Systems of Bellman equations to stochastic differential games with non-compact coupling
Stability of solitary-wave solutions to the Hirota-Satsuma equation
1. | Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, United States |
2. | UFRJ, Institute of Mathematics, Federal University of Rio de Janeiro, P.O. Box 68530, CEP: 21945-970, Rio de Janeiro, RJ, Brazil |
$ u_t- $ uxxt$ +u_x-$uut$ +u_x\int_x^{+\infty}u_tdx'=0, $ (1)
was developed by Hirota and Satsuma as an approximate model for unidirectional propagation of long-crested water waves. It possesses solitary-wave solutions just as do the related Korteweg-de Vries and Benjamin-Bona-Mahony equations. Using the recently developed theory for the initial-value problem for (1) and an analysis of an associated Liapunov functional, nonlinear stability of these solitary waves is established.
[1] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain. Mathematical Control and Related Fields, 2011, 1 (3) : 353-389. doi: 10.3934/mcrf.2011.1.353 |
[2] |
Netra Khanal, Ramjee Sharma, Jiahong Wu, Juan-Ming Yuan. A dual-Petrov-Galerkin method for extended fifth-order Korteweg-de Vries type equations. Conference Publications, 2009, 2009 (Special) : 442-450. doi: 10.3934/proc.2009.2009.442 |
[3] |
Muhammad Usman, Bing-Yu Zhang. Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1509-1523. doi: 10.3934/dcds.2010.26.1509 |
[4] |
Brian Pigott. Polynomial-in-time upper bounds for the orbital instability of subcritical generalized Korteweg-de Vries equations. Communications on Pure and Applied Analysis, 2014, 13 (1) : 389-418. doi: 10.3934/cpaa.2014.13.389 |
[5] |
Olivier Goubet. Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 625-644. doi: 10.3934/dcds.2000.6.625 |
[6] |
Eduardo Cerpa. Control of a Korteweg-de Vries equation: A tutorial. Mathematical Control and Related Fields, 2014, 4 (1) : 45-99. doi: 10.3934/mcrf.2014.4.45 |
[7] |
M. Agrotis, S. Lafortune, P.G. Kevrekidis. On a discrete version of the Korteweg-De Vries equation. Conference Publications, 2005, 2005 (Special) : 22-29. doi: 10.3934/proc.2005.2005.22 |
[8] |
Julie Valein. On the asymptotic stability of the Korteweg-de Vries equation with time-delayed internal feedback. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021039 |
[9] |
Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255 |
[10] |
Eduardo Cerpa, Emmanuelle Crépeau. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 655-668. doi: 10.3934/dcdsb.2009.11.655 |
[11] |
Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069 |
[12] |
Ahmat Mahamat Taboye, Mohamed Laabissi. Exponential stabilization of a linear Korteweg-de Vries equation with input saturation. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021052 |
[13] |
Ola I. H. Maehlen. Solitary waves for weakly dispersive equations with inhomogeneous nonlinearities. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4113-4130. doi: 10.3934/dcds.2020174 |
[14] |
Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313 |
[15] |
Mudassar Imran, Youssef Raffoul, Muhammad Usman, Chi Zhang. A study of bifurcation parameters in travelling wave solutions of a damped forced Korteweg de Vries-Kuramoto Sivashinsky type equation. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 691-705. doi: 10.3934/dcdss.2018043 |
[16] |
Juan Belmonte-Beitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1007-1017. doi: 10.3934/dcdss.2011.4.1007 |
[17] |
Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789 |
[18] |
Fabrício Cristófani, Ademir Pastor. Nonlinear stability of periodic-wave solutions for systems of dispersive equations. Communications on Pure and Applied Analysis, 2020, 19 (10) : 5015-5032. doi: 10.3934/cpaa.2020225 |
[19] |
Eduardo Cerpa, Emmanuelle Crépeau, Julie Valein. Boundary controllability of the Korteweg-de Vries equation on a tree-shaped network. Evolution Equations and Control Theory, 2020, 9 (3) : 673-692. doi: 10.3934/eect.2020028 |
[20] |
Ludovick Gagnon. Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1489-1507. doi: 10.3934/dcds.2017061 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]