November  2010, 27(4): 1447-1472. doi: 10.3934/dcds.2010.27.1447

Numerical solution of a variational problem arising in stress analysis: The vector case

1. 

University of Houston, Department of Mathematics, 4800 Calhoun Rd, Houston, Texas 77204 - 3008

Received  August 2008 Revised  October 2009 Published  March 2010

In this article, we discuss the numerical solution of a constrained minimization problem arising from the stress analysis of elasto-plastic bodies. This minimization problem has the flavor of a generalized non-smooth eigenvalue problem, with the smallest eigenvalue corresponding to the load capacity ratio of the elastic body under consideration. An augmented Lagrangian method, together with finite element approximations, is proposed for the computation of the optimum of the non-smooth objective function, and the corresponding minimizer. The augmented Lagrangian approach allows the decoupling of some of the nonlinearities and of the differential operators. Similarly an appropriate Lagrangian functional, and associated Uzawa algorithm with projection, are introduced to treat non-smooth equality constraints. Numerical results validate the proposed methodology for various two-dimensional geometries.
Citation: Alexandre Caboussat, Roland Glowinski. Numerical solution of a variational problem arising in stress analysis: The vector case. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1447-1472. doi: 10.3934/dcds.2010.27.1447
[1]

Luis Bayón, Jose Maria Grau, Maria del Mar Ruiz, Pedro Maria Suárez. A hydrothermal problem with non-smooth Lagrangian. Journal of Industrial and Management Optimization, 2014, 10 (3) : 761-776. doi: 10.3934/jimo.2014.10.761

[2]

Fatemeh Bazikar, Saeed Ketabchi, Hossein Moosaei. Smooth augmented Lagrangian method for twin bounded support vector machine. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021027

[3]

Xueyong Wang, Yiju Wang, Gang Wang. An accelerated augmented Lagrangian method for multi-criteria optimization problem. Journal of Industrial and Management Optimization, 2020, 16 (1) : 1-9. doi: 10.3934/jimo.2018136

[4]

Nurullah Yilmaz, Ahmet Sahiner. On a new smoothing technique for non-smooth, non-convex optimization. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 317-330. doi: 10.3934/naco.2020004

[5]

Chunlin Wu, Juyong Zhang, Xue-Cheng Tai. Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Problems and Imaging, 2011, 5 (1) : 237-261. doi: 10.3934/ipi.2011.5.237

[6]

Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153

[7]

Paul Glendinning. Non-smooth pitchfork bifurcations. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 457-464. doi: 10.3934/dcdsb.2004.4.457

[8]

Chunrong Chen, T. C. Edwin Cheng, Shengji Li, Xiaoqi Yang. Nonlinear augmented Lagrangian for nonconvex multiobjective optimization. Journal of Industrial and Management Optimization, 2011, 7 (1) : 157-174. doi: 10.3934/jimo.2011.7.157

[9]

Laetitia Paoli. A proximal-like algorithm for vibro-impact problems with a non-smooth set of constraints. Conference Publications, 2011, 2011 (Special) : 1186-1195. doi: 10.3934/proc.2011.2011.1186

[10]

Alexandre Caboussat, Roland Glowinski. A Numerical Method for a Non-Smooth Advection-Diffusion Problem Arising in Sand Mechanics. Communications on Pure and Applied Analysis, 2009, 8 (1) : 161-178. doi: 10.3934/cpaa.2009.8.161

[11]

Yin Yang, Sujuan Kang, Vasiliy I. Vasil'ev. The Jacobi spectral collocation method for fractional integro-differential equations with non-smooth solutions. Electronic Research Archive, 2020, 28 (3) : 1161-1189. doi: 10.3934/era.2020064

[12]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 903-920. doi: 10.3934/dcdsb.2021073

[13]

Chunrong Chen. A unified nonlinear augmented Lagrangian approach for nonconvex vector optimization. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 495-508. doi: 10.3934/naco.2011.1.495

[14]

Giuseppe Tomassetti. Smooth and non-smooth regularizations of the nonlinear diffusion equation. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1519-1537. doi: 10.3934/dcdss.2017078

[15]

Li Jin, Hongying Huang. Differential equation method based on approximate augmented Lagrangian for nonlinear programming. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2267-2281. doi: 10.3934/jimo.2019053

[16]

Wei Zhu, Xue-Cheng Tai, Tony Chan. Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Problems and Imaging, 2013, 7 (4) : 1409-1432. doi: 10.3934/ipi.2013.7.1409

[17]

Nicola Gigli, Sunra Mosconi. The Abresch-Gromoll inequality in a non-smooth setting. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1481-1509. doi: 10.3934/dcds.2014.34.1481

[18]

Hongwei Lou, Junjie Wen, Yashan Xu. Time optimal control problems for some non-smooth systems. Mathematical Control and Related Fields, 2014, 4 (3) : 289-314. doi: 10.3934/mcrf.2014.4.289

[19]

Yanni Xiao, Tingting Zhao, Sanyi Tang. Dynamics of an infectious diseases with media/psychology induced non-smooth incidence. Mathematical Biosciences & Engineering, 2013, 10 (2) : 445-461. doi: 10.3934/mbe.2013.10.445

[20]

Deepak Singh, Bilal Ahmad Dar, Do Sang Kim. Sufficiency and duality in non-smooth interval valued programming problems. Journal of Industrial and Management Optimization, 2019, 15 (2) : 647-665. doi: 10.3934/jimo.2018063

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]