
Previous Article
A model for shape memory alloys with the possibility of voids
 DCDS Home
 This Issue

Next Article
Long time behavior and attractors for energetically insulated fluid systems
Topological properties of the weak global attractor of the threedimensional NavierStokes equations
1.  Department of Mathematics, Texas A&M University, College Station, TX 77843 
2.  Instituto de Matemática, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, Ilha do Fundão, Rio de Janeiro, RJ 21941909 
3.  Department of Mathematics, Indiana University, Bloomington, IN 47405, United States 
[1] 
Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D NavierStokes equations:Ⅰ. Discrete and Continuous Dynamical Systems  B, 2017, 22 (6) : 23392350. doi: 10.3934/dcdsb.2017101 
[2] 
Daniel Coutand, J. Peirce, Steve Shkoller. Global wellposedness of weak solutions for the Lagrangian averaged NavierStokes equations on bounded domains. Communications on Pure and Applied Analysis, 2002, 1 (1) : 3550. doi: 10.3934/cpaa.2002.1.35 
[3] 
Daniel Pardo, José Valero, Ángel Giménez. Global attractors for weak solutions of the threedimensional NavierStokes equations with damping. Discrete and Continuous Dynamical Systems  B, 2019, 24 (8) : 35693590. doi: 10.3934/dcdsb.2018279 
[4] 
JianGuo Liu, Zhaoyun Zhang. Existence of global weak solutions of $ p $NavierStokes equations. Discrete and Continuous Dynamical Systems  B, 2022, 27 (1) : 469486. doi: 10.3934/dcdsb.2021051 
[5] 
Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous NavierStokes equations. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 95110. doi: 10.3934/dcds.1996.2.95 
[6] 
Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional NavierStokes equations. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 161179. doi: 10.3934/dcds.2010.28.161 
[7] 
Chérif Amrouche, María Ángeles RodríguezBellido. On the very weak solution for the Oseen and NavierStokes equations. Discrete and Continuous Dynamical Systems  S, 2010, 3 (2) : 159183. doi: 10.3934/dcdss.2010.3.159 
[8] 
Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the twodimensional NavierStokes equations of compressible heatconducting flows with symmetric data and forces. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 567587. doi: 10.3934/dcds.2014.34.567 
[9] 
Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the NavierStokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 12341243. doi: 10.3934/proc.2011.2011.1234 
[10] 
Keyan Wang. On global regularity of incompressible NavierStokes equations in $\mathbf R^3$. Communications on Pure and Applied Analysis, 2009, 8 (3) : 10671072. doi: 10.3934/cpaa.2009.8.1067 
[11] 
Daoyuan Fang, Bin Han, Matthias Hieber. Local and global existence results for the NavierStokes equations in the rotational framework. Communications on Pure and Applied Analysis, 2015, 14 (2) : 609622. doi: 10.3934/cpaa.2015.14.609 
[12] 
Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible NavierStokes equations with vacuum. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 10851103. doi: 10.3934/dcds.2016.36.1085 
[13] 
Reinhard Racke, Jürgen Saal. Hyperbolic NavierStokes equations II: Global existence of small solutions. Evolution Equations and Control Theory, 2012, 1 (1) : 217234. doi: 10.3934/eect.2012.1.217 
[14] 
Joelma Azevedo, Juan Carlos Pozo, Arlúcio Viana. Global solutions to the nonlocal NavierStokes equations. Discrete and Continuous Dynamical Systems  B, 2022, 27 (5) : 25152535. doi: 10.3934/dcdsb.2021146 
[15] 
Alexei Ilyin, Kavita Patni, Sergey Zelik. Upper bounds for the attractor dimension of damped NavierStokes equations in $\mathbb R^2$. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 20852102. doi: 10.3934/dcds.2016.36.2085 
[16] 
Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible NavierStokes. Kinetic and Related Models, 2016, 9 (1) : 75103. doi: 10.3934/krm.2016.9.75 
[17] 
Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible NavierStokes equation. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 50035019. doi: 10.3934/dcds.2017215 
[18] 
Pavel I. Plotnikov, Jan Sokolowski. Compressible NavierStokes equations. Conference Publications, 2009, 2009 (Special) : 602611. doi: 10.3934/proc.2009.2009.602 
[19] 
Jan W. Cholewa, Tomasz Dlotko. Fractional NavierStokes equations. Discrete and Continuous Dynamical Systems  B, 2018, 23 (8) : 29672988. doi: 10.3934/dcdsb.2017149 
[20] 
Fang Li, Bo You, Yao Xu. Dynamics of weak solutions for the three dimensional NavierStokes equations with nonlinear damping. Discrete and Continuous Dynamical Systems  B, 2018, 23 (10) : 42674284. doi: 10.3934/dcdsb.2018137 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]