Advanced Search
Article Contents
Article Contents

On the existence of solutions for the Navier-Stokes system in a sum of weak-$L^{p}$ spaces

Abstract Related Papers Cited by
  • We study the Navier-Stokes system with initial data belonging to sum of two weak-$L^{p}$ spaces, which contains the sum of homogeneous function with different degrees. The domain $\Omega$ can be either an exterior domain, the half-space, the whole space or a bounded domain with dimension $n\geq 2$. We obtain the existence of local mild solutions in the same class of initial data and moreover we show results about uniqueness, regularity and continuous dependence of solutions with respect to the initial data. To obtain our results we prove a new Hölder-type inequality on the sum of Lorentz spaces.
    Mathematics Subject Classification: Primary: 35Q30; Secondary: 76D03, 76D05.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(108) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint