$ \alpha $ > 1/2 if d=1
$ \alpha > \frac d2-\frac{1}{2(p-1)} if d\geq2 and (d,p)\neq(3,2) $
$ \alpha \geq 1 if (d,p)=(3,2) $
where $p=2$ for the cubic, and $p=4$ for the quintic GP hierarchy; the parameter $\xi>0$ is arbitrary and determines the energy scale of the problem. For focusing GP hierarchies, we prove lower bounds on the blowup rate. Moreover, pseudoconformal invariance is established in the cases corresponding to $L^2$ criticality, both in the focusing and defocusing context. All of these results hold without the assumption of factorized initial conditions.
Citation: |