May  2010, 27(2): 847-861. doi: 10.3934/dcds.2010.27.847

Eventual regularization of the slightly supercritical fractional Burgers equation

1. 

Institute for Mathematics and its Applications, University of Minnesota, 207 Church Street SE, Minneapolis, MN 55455-0134, United States

2. 

Department of Mathematics, University of Toronto, 40 St. George St. Toronto, Ontario, M5S 2E4, Canada

3. 

Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, Illinois 60637, United States

Received  October 2009 Revised  February 2010 Published  February 2010

We prove that a weak solution of a slightly supercritical fractional Burgers equation becomes Hölder continuous for large time.
Citation: Chi Hin Chan, Magdalena Czubak, Luis Silvestre. Eventual regularization of the slightly supercritical fractional Burgers equation. Discrete & Continuous Dynamical Systems, 2010, 27 (2) : 847-861. doi: 10.3934/dcds.2010.27.847
[1]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[2]

Changfeng Gui. On some problems related to de Giorgi’s conjecture. Communications on Pure & Applied Analysis, 2003, 2 (1) : 101-106. doi: 10.3934/cpaa.2003.2.101

[3]

Paolo Baroni, Agnese Di Castro, Giampiero Palatucci. Intrinsic geometry and De Giorgi classes for certain anisotropic problems. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 647-659. doi: 10.3934/dcdss.2017032

[4]

Luis A. Caffarelli, Alexis F. Vasseur. The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 409-427. doi: 10.3934/dcdss.2010.3.409

[5]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[6]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[7]

Abdon Atangana, Ali Akgül. On solutions of fractal fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3441-3457. doi: 10.3934/dcdss.2020421

[8]

S. Aaron, Z. Conn, Robert S. Strichartz, H. Yu. Hodge-de Rham theory on fractal graphs and fractals. Communications on Pure & Applied Analysis, 2014, 13 (2) : 903-928. doi: 10.3934/cpaa.2014.13.903

[9]

Zhaosheng Feng, Yu Huang. Approximate solution of the Burgers-Korteweg-de Vries equation. Communications on Pure & Applied Analysis, 2007, 6 (2) : 429-440. doi: 10.3934/cpaa.2007.6.429

[10]

Amy Allwright, Abdon Atangana, Toufik Mekkaoui. Fractional and fractal advection-dispersion model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2055-2074. doi: 10.3934/dcdss.2021061

[11]

Alexandre Boritchev. Decaying turbulence for the fractional subcritical Burgers equation. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2229-2249. doi: 10.3934/dcds.2018092

[12]

Binbin Shi, Weike Wang. Existence and blow up of solutions to the $ 2D $ Burgers equation with supercritical dissipation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1169-1192. doi: 10.3934/dcdsb.2019215

[13]

Liping Luo, Zhenguo Luo, Yunhui Zeng. New results for oscillation of fractional partial differential equations with damping term. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3223-3231. doi: 10.3934/dcdss.2020336

[14]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3337-3349. doi: 10.3934/dcdss.2020443

[15]

Ali Akgül. Analysis and new applications of fractal fractional differential equations with power law kernel. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3401-3417. doi: 10.3934/dcdss.2020423

[16]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[17]

Vincent Millot, Yannick Sire, Hui Yu. Minimizing fractional harmonic maps on the real line in the supercritical regime. Discrete & Continuous Dynamical Systems, 2018, 38 (12) : 6195-6214. doi: 10.3934/dcds.2018266

[18]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[19]

Songbai Peng, Aliang Xia. Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021128

[20]

Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (114)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]