- Previous Article
- DCDS Home
- This Issue
-
Next Article
Front propagation problems with sub-diffusion
Eventual regularization of the slightly supercritical fractional Burgers equation
1. | Institute for Mathematics and its Applications, University of Minnesota, 207 Church Street SE, Minneapolis, MN 55455-0134, United States |
2. | Department of Mathematics, University of Toronto, 40 St. George St. Toronto, Ontario, M5S 2E4, Canada |
3. | Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, Illinois 60637, United States |
[1] |
Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017 |
[2] |
Changfeng Gui. On some problems related to de Giorgi’s conjecture. Communications on Pure and Applied Analysis, 2003, 2 (1) : 101-106. doi: 10.3934/cpaa.2003.2.101 |
[3] |
Paolo Baroni, Agnese Di Castro, Giampiero Palatucci. Intrinsic geometry and De Giorgi classes for certain anisotropic problems. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 647-659. doi: 10.3934/dcdss.2017032 |
[4] |
Luis A. Caffarelli, Alexis F. Vasseur. The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics. Discrete and Continuous Dynamical Systems - S, 2010, 3 (3) : 409-427. doi: 10.3934/dcdss.2010.3.409 |
[5] |
Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043 |
[6] |
Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160 |
[7] |
S. Aaron, Z. Conn, Robert S. Strichartz, H. Yu. Hodge-de Rham theory on fractal graphs and fractals. Communications on Pure and Applied Analysis, 2014, 13 (2) : 903-928. doi: 10.3934/cpaa.2014.13.903 |
[8] |
Abdon Atangana, Ali Akgül. On solutions of fractal fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3441-3457. doi: 10.3934/dcdss.2020421 |
[9] |
Zhaosheng Feng, Yu Huang. Approximate solution of the Burgers-Korteweg-de Vries equation. Communications on Pure and Applied Analysis, 2007, 6 (2) : 429-440. doi: 10.3934/cpaa.2007.6.429 |
[10] |
Amy Allwright, Abdon Atangana, Toufik Mekkaoui. Fractional and fractal advection-dispersion model. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2055-2074. doi: 10.3934/dcdss.2021061 |
[11] |
Alexandre Boritchev. Decaying turbulence for the fractional subcritical Burgers equation. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2229-2249. doi: 10.3934/dcds.2018092 |
[12] |
Binbin Shi, Weike Wang. Existence and blow up of solutions to the $ 2D $ Burgers equation with supercritical dissipation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1169-1192. doi: 10.3934/dcdsb.2019215 |
[13] |
Liping Luo, Zhenguo Luo, Yunhui Zeng. New results for oscillation of fractional partial differential equations with damping term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3223-3231. doi: 10.3934/dcdss.2020336 |
[14] |
Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3337-3349. doi: 10.3934/dcdss.2020443 |
[15] |
Ali Akgül. Analysis and new applications of fractal fractional differential equations with power law kernel. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3401-3417. doi: 10.3934/dcdss.2020423 |
[16] |
Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140 |
[17] |
Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255 |
[18] |
Vincent Millot, Yannick Sire, Hui Yu. Minimizing fractional harmonic maps on the real line in the supercritical regime. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6195-6214. doi: 10.3934/dcds.2018266 |
[19] |
Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057 |
[20] |
Songbai Peng, Aliang Xia. Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3723-3744. doi: 10.3934/cpaa.2021128 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]