August  2010, 27(3): 919-934. doi: 10.3934/dcds.2010.27.919

Boundary stabilization of the wave and Schrödinger equations in exterior domains

1. 

Département de Mathématiques, Faculté des Sciences de Bizerte, Tunisia

2. 

Département de Mathématiques, Faculté des Sciences de Monastir, Tunisia

Received  July 2009 Revised  December 2009 Published  March 2010

In this paper we complete our works on the local energy decay for the evolution damping problem in exterior domains. We consider the wave and Schrödinger equations in an exterior domain with dissipative boundary condition. We study the distribution of resonances under some natural assumptions on the behavior of the geodesics in order to deduce the uniform local energy decay.
Citation: Lassaad Aloui, Moez Khenissi. Boundary stabilization of the wave and Schrödinger equations in exterior domains. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 919-934. doi: 10.3934/dcds.2010.27.919
[1]

Roberto Guglielmi. Indirect stabilization of hyperbolic systems through resolvent estimates. Evolution Equations & Control Theory, 2017, 6 (1) : 59-75. doi: 10.3934/eect.2017004

[2]

Jesús Ildefonso Díaz. On the free boundary for quenching type parabolic problems via local energy methods. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1799-1814. doi: 10.3934/cpaa.2014.13.1799

[3]

Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635

[4]

Carlos J. S. Alves, Nuno F. M. Martins, Nilson C. Roberty. Full identification of acoustic sources with multiple frequencies and boundary measurements. Inverse Problems & Imaging, 2009, 3 (2) : 275-294. doi: 10.3934/ipi.2009.3.275

[5]

J. Cruz-Sampedro. Boundary values of the resolvent of Schrödinger hamiltonians with potentials of order zero. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1061-1076. doi: 10.3934/dcds.2013.33.1061

[6]

Stefano Fasani, Sergio Rinaldi. Local stabilization and network synchronization: The case of stationary regimes. Mathematical Biosciences & Engineering, 2010, 7 (3) : 623-639. doi: 10.3934/mbe.2010.7.623

[7]

Tobias Breiten, Karl Kunisch. Boundary feedback stabilization of the monodomain equations. Mathematical Control & Related Fields, 2017, 7 (3) : 369-391. doi: 10.3934/mcrf.2017013

[8]

Huijuan Li, Robert Baier, Lars Grüne, Sigurdur F. Hafstein, Fabian R. Wirth. Computation of local ISS Lyapunov functions with low gains via linear programming. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2477-2495. doi: 10.3934/dcdsb.2015.20.2477

[9]

Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057

[10]

Martin Gugat, Mario Sigalotti. Stars of vibrating strings: Switching boundary feedback stabilization. Networks & Heterogeneous Media, 2010, 5 (2) : 299-314. doi: 10.3934/nhm.2010.5.299

[11]

Hisashi Nishiyama. Boundary stabilization of the waves in partially rectangular domains. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1583-1601. doi: 10.3934/dcds.2013.33.1583

[12]

Xiaoyu Fu. Stabilization of hyperbolic equations with mixed boundary conditions. Mathematical Control & Related Fields, 2015, 5 (4) : 761-780. doi: 10.3934/mcrf.2015.5.761

[13]

Kaïs Ammari, Denis Mercier. Boundary feedback stabilization of a chain of serially connected strings. Evolution Equations & Control Theory, 2015, 4 (1) : 1-19. doi: 10.3934/eect.2015.4.1

[14]

Yulong Xing, Ching-Shan Chou, Chi-Wang Shu. Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Problems & Imaging, 2013, 7 (3) : 967-986. doi: 10.3934/ipi.2013.7.967

[15]

Thierry Daudé, Damien Gobin, François Nicoleau. Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds. Inverse Problems & Imaging, 2016, 10 (3) : 659-688. doi: 10.3934/ipi.2016016

[16]

Yang Xiang, Xiaodong Yan. Stability of dislocation networks of low angle grain boundaries using a continuum energy formulation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2989-3021. doi: 10.3934/dcdsb.2017183

[17]

Raffaella Servadei, Enrico Valdinoci. A Brezis-Nirenberg result for non-local critical equations in low dimension. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2445-2464. doi: 10.3934/cpaa.2013.12.2445

[18]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

[19]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[20]

Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control & Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]