-
Previous Article
Discrete orbits in topologically transitive cylindrical transformations
- DCDS Home
- This Issue
-
Next Article
Boundary stabilization of the wave and Schrödinger equations in exterior domains
Baire category and extremely non-normal points of invariant sets of IFS's
1. | Department of Mathematics, Pusan University of Foreign Studies, Pusan 608-738, South Korea |
2. | Department of Mathematics, University of St. Andrews, St. Andrews, Fife KY16 9SS, Scotland |
[1] |
Manfred G. Madritsch. Non-normal numbers with respect to Markov partitions. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 663-676. doi: 10.3934/dcds.2014.34.663 |
[2] |
Krzysztof Barański. Hausdorff dimension of self-affine limit sets with an invariant direction. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1015-1023. doi: 10.3934/dcds.2008.21.1015 |
[3] |
Razvan Gabriel Iagar, Ana Isabel Muñoz, Ariel Sánchez. Self-similar blow-up patterns for a reaction-diffusion equation with weighted reaction in general dimension. Communications on Pure and Applied Analysis, 2022, 21 (3) : 891-925. doi: 10.3934/cpaa.2022003 |
[4] |
Carlos Matheus, Jacob Palis. An estimate on the Hausdorff dimension of stable sets of non-uniformly hyperbolic horseshoes. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 431-448. doi: 10.3934/dcds.2018020 |
[5] |
Manfred G. Madritsch, Izabela Petrykiewicz. Non-normal numbers in dynamical systems fulfilling the specification property. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4751-4764. doi: 10.3934/dcds.2014.34.4751 |
[6] |
Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118. |
[7] |
Krzysztof Barański, Michał Wardal. On the Hausdorff dimension of the Sierpiński Julia sets. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3293-3313. doi: 10.3934/dcds.2015.35.3293 |
[8] |
P. De Maesschalck. Gevrey normal forms for nilpotent contact points of order two. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 677-688. doi: 10.3934/dcds.2014.34.677 |
[9] |
Lulu Fang, Min Wu. Hausdorff dimension of certain sets arising in Engel continued fractions. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2375-2393. doi: 10.3934/dcds.2018098 |
[10] |
Doug Hensley. Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2417-2436. doi: 10.3934/dcds.2012.32.2417 |
[11] |
Vanderlei Horita, Marcelo Viana. Hausdorff dimension for non-hyperbolic repellers II: DA diffeomorphisms. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1125-1152. doi: 10.3934/dcds.2005.13.1125 |
[12] |
Paul Wright. Differentiability of Hausdorff dimension of the non-wandering set in a planar open billiard. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3993-4014. doi: 10.3934/dcds.2016.36.3993 |
[13] |
Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002 |
[14] |
Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic and Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801 |
[15] |
Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure and Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47 |
[16] |
Adrian Petruşel, Radu Precup, Marcel-Adrian Şerban. On the approximation of fixed points for non-self mappings on metric spaces. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 733-747. doi: 10.3934/dcdsb.2019264 |
[17] |
Rasul Shafikov, Christian Wolf. Stable sets, hyperbolicity and dimension. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 403-412. doi: 10.3934/dcds.2005.12.403 |
[18] |
Rostislav Grigorchuk, Volodymyr Nekrashevych. Self-similar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323-370. doi: 10.3934/jmd.2007.1.323 |
[19] |
Christoph Bandt, Helena PeÑa. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198 |
[20] |
Anna Chiara Lai, Paola Loreti. Self-similar control systems and applications to zygodactyl bird's foot. Networks and Heterogeneous Media, 2015, 10 (2) : 401-419. doi: 10.3934/nhm.2015.10.401 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]