
Previous Article
Microdynamics for Nash maps
 DCDS Home
 This Issue

Next Article
Optimal interior partial regularity for nonlinear elliptic systems
A note on two approaches to the thermodynamic formalism
1.  Department of Mathematics, McAllister Building, Pennsylvania State University, University Park, PA 16802 
[1] 
Yakov Pesin, Samuel Senti. Equilibrium measures for maps with inducing schemes. Journal of Modern Dynamics, 2008, 2 (3) : 397430. doi: 10.3934/jmd.2008.2.397 
[2] 
Renaud Leplaideur. From local to global equilibrium states: Thermodynamic formalism via an inducing scheme. Electronic Research Announcements, 2014, 21: 7279. doi: 10.3934/era.2014.21.72 
[3] 
Luis Barreira. Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures. Discrete & Continuous Dynamical Systems  A, 2006, 16 (2) : 279305. doi: 10.3934/dcds.2006.16.279 
[4] 
Kaijen Cheng, Kenneth Palmer, YuhJenn Wu. Period 3 and chaos for unimodal maps. Discrete & Continuous Dynamical Systems  A, 2014, 34 (5) : 19331949. doi: 10.3934/dcds.2014.34.1933 
[5] 
Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete & Continuous Dynamical Systems  A, 2003, 9 (3) : 617632. doi: 10.3934/dcds.2003.9.617 
[6] 
Viviane Baladi, Daniel Smania. Smooth deformations of piecewise expanding unimodal maps. Discrete & Continuous Dynamical Systems  A, 2009, 23 (3) : 685703. doi: 10.3934/dcds.2009.23.685 
[7] 
Claudio Bonanno, Carlo Carminati, Stefano Isola, Giulio Tiozzo. Dynamics of continued fractions and kneading sequences of unimodal maps. Discrete & Continuous Dynamical Systems  A, 2013, 33 (4) : 13131332. doi: 10.3934/dcds.2013.33.1313 
[8] 
José M. Amigó, Ángel Giménez. Formulas for the topological entropy of multimodal maps based on minmax symbols. Discrete & Continuous Dynamical Systems  B, 2015, 20 (10) : 34153434. doi: 10.3934/dcdsb.2015.20.3415 
[9] 
Iryna Sushko, Anna Agliari, Laura Gardini. Bistability and bordercollision bifurcations for a family of unimodal piecewise smooth maps. Discrete & Continuous Dynamical Systems  B, 2005, 5 (3) : 881897. doi: 10.3934/dcdsb.2005.5.881 
[10] 
Chris Good, Robin Knight, Brian Raines. Countable inverse limits of postcritical $w$limit sets of unimodal maps. Discrete & Continuous Dynamical Systems  A, 2010, 27 (3) : 10591078. doi: 10.3934/dcds.2010.27.1059 
[11] 
Lam Quoc Anh, Pham Thanh Duoc, Tran Ngoc Tam. Continuity of approximate solution maps to vector equilibrium problems. Journal of Industrial & Management Optimization, 2017, 13 (4) : 16851699. doi: 10.3934/jimo.2017013 
[12] 
Jawad AlKhal, Henk Bruin, Michael Jakobson. New examples of Sunimodal maps with a sigmafinite absolutely continuous invariant measure. Discrete & Continuous Dynamical Systems  A, 2008, 22 (1&2) : 3561. doi: 10.3934/dcds.2008.22.35 
[13] 
Yi Yang, Robert J. Sacker. Periodic unimodal Allee maps, the semigroup property and the $\lambda$Ricker map with Allee effect. Discrete & Continuous Dynamical Systems  B, 2014, 19 (2) : 589606. doi: 10.3934/dcdsb.2014.19.589 
[14] 
Yakov Pesin. On the work of Sarig on countable Markov chains and thermodynamic formalism. Journal of Modern Dynamics, 2014, 8 (1) : 114. doi: 10.3934/jmd.2014.8.1 
[15] 
Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Thermodynamic formalism for random countable Markov shifts. Discrete & Continuous Dynamical Systems  A, 2008, 22 (1&2) : 131164. doi: 10.3934/dcds.2008.22.131 
[16] 
Yongluo Cao, DeJun Feng, Wen Huang. The thermodynamic formalism for subadditive potentials. Discrete & Continuous Dynamical Systems  A, 2008, 20 (3) : 639657. doi: 10.3934/dcds.2008.20.639 
[17] 
Anna Mummert. The thermodynamic formalism for almostadditive sequences. Discrete & Continuous Dynamical Systems  A, 2006, 16 (2) : 435454. doi: 10.3934/dcds.2006.16.435 
[18] 
Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Corrigendum to: Thermodynamic formalism for random countable Markov shifts. Discrete & Continuous Dynamical Systems  A, 2015, 35 (1) : 593594. doi: 10.3934/dcds.2015.35.593 
[19] 
Michael Jakobson, Lucia D. Simonelli. Countable Markov partitions suitable for thermodynamic formalism. Journal of Modern Dynamics, 2018, 13: 199219. doi: 10.3934/jmd.2018018 
[20] 
Gerhard Keller. Stability index, uncertainty exponent, and thermodynamic formalism for intermingled basins of chaotic attractors. Discrete & Continuous Dynamical Systems  S, 2017, 10 (2) : 313334. doi: 10.3934/dcdss.2017015 
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]