• Previous Article
    Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior
  • DCDS Home
  • This Issue
  • Next Article
    A general description of quantum dynamical spreading over an orthonormal basis and applications to Schrödinger operators
December  2010, 28(4): 1413-1435. doi: 10.3934/dcds.2010.28.1413

Charge-balanced spike timing control for phase models of spiking neurons

1. 

Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, United States, United States, United States

Received  October 2009 Revised  February 2010 Published  June 2010

This paper explores event-based feedback schemes for controlling spike timing in phase models of neurons with the constraint of a charge-balanced stimulus over a period of stimulation. We present an energy-optimal control system based on variational methods. We also present a biologically-inspired quasi-impulsive control system that, mimicking the signaling behavior of real neurons, can achieve reference phase tracking. Applied to a pacemaker-driven ensemble, this control can achieve desynchronization using a set of charge-balanced stimuli.
Citation: Per Danzl, Ali Nabi, Jeff Moehlis. Charge-balanced spike timing control for phase models of spiking neurons. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1413-1435. doi: 10.3934/dcds.2010.28.1413
[1]

Alain Miranville. Some mathematical models in phase transition. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 271-306. doi: 10.3934/dcdss.2014.7.271

[2]

Linghai Zhang, Ping-Shi Wu, Melissa Anne Stoner. Influence of neurobiological mechanisms on speeds of traveling wave fronts in mathematical neuroscience. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 1003-1037. doi: 10.3934/dcdsb.2011.16.1003

[3]

Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417

[4]

Avner Friedman. A hierarchy of cancer models and their mathematical challenges. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 147-159. doi: 10.3934/dcdsb.2004.4.147

[5]

Rolf Ryham, Chun Liu, Ludmil Zikatanov. Mathematical models for the deformation of electrolyte droplets. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 649-661. doi: 10.3934/dcdsb.2007.8.649

[6]

Yang Kuang, John D. Nagy, James J. Elser. Biological stoichiometry of tumor dynamics: Mathematical models and analysis. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 221-240. doi: 10.3934/dcdsb.2004.4.221

[7]

Akisato Kubo. Nonlinear evolution equations associated with mathematical models. Conference Publications, 2011, 2011 (Special) : 881-890. doi: 10.3934/proc.2011.2011.881

[8]

Maciek Korzec, Andreas Münch, Endre Süli, Barbara Wagner. Anisotropy in wavelet-based phase field models. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1167-1187. doi: 10.3934/dcdsb.2016.21.1167

[9]

Mauro Garavello, Benedetto Piccoli. Coupling of microscopic and phase transition models at boundary. Networks & Heterogeneous Media, 2013, 8 (3) : 649-661. doi: 10.3934/nhm.2013.8.649

[10]

Sue Ann Campbell, Ilya Kobelevskiy. Phase models and oscillators with time delayed coupling. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2653-2673. doi: 10.3934/dcds.2012.32.2653

[11]

Paola Goatin. Traffic flow models with phase transitions on road networks. Networks & Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287

[12]

Alessia Berti, Claudio Giorgi, Angelo Morro. Mathematical modeling of phase transition and separation in fluids: A unified approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1889-1909. doi: 10.3934/dcdsb.2014.19.1889

[13]

Liumei Wu, Baojun Song, Wen Du, Jie Lou. Mathematical modelling and control of echinococcus in Qinghai province, China. Mathematical Biosciences & Engineering, 2013, 10 (2) : 425-444. doi: 10.3934/mbe.2013.10.425

[14]

Urszula Ledzewicz, Behrooz Amini, Heinz Schättler. Dynamics and control of a mathematical model for metronomic chemotherapy. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1257-1275. doi: 10.3934/mbe.2015.12.1257

[15]

Cecilia Cavaterra, Denis Enăchescu, Gabriela Marinoschi. Sliding mode control of the Hodgkin–Huxley mathematical model. Evolution Equations & Control Theory, 2019, 8 (4) : 883-902. doi: 10.3934/eect.2019043

[16]

Shui-Nee Chow, Yongfeng Li. Model reference control for SIRS models. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 675-697. doi: 10.3934/dcds.2009.24.675

[17]

Wenxiang Liu, Thomas Hillen, H. I. Freedman. A mathematical model for M-phase specific chemotherapy including the $G_0$-phase and immunoresponse. Mathematical Biosciences & Engineering, 2007, 4 (2) : 239-259. doi: 10.3934/mbe.2007.4.239

[18]

Urszula Ledzewicz, Heinz Schättler. On the optimality of singular controls for a class of mathematical models for tumor anti-angiogenesis. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 691-715. doi: 10.3934/dcdsb.2009.11.691

[19]

Mihai Bostan, Claudia Negulescu. Mathematical models for strongly magnetized plasmas with mass disparate particles. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 513-544. doi: 10.3934/dcdsb.2011.15.513

[20]

Weinan E, Jianfeng Lu. Mathematical theory of solids: From quantum mechanics to continuum models. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5085-5097. doi: 10.3934/dcds.2014.34.5085

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (24)

Other articles
by authors

[Back to Top]