
Previous Article
Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/GrossPitaevskii equations
 DCDS Home
 This Issue

Next Article
Poisson brackets, quasistates and symplectic integrators
New insights into the classical mechanics of particle systems
1.  Department of Mechanical Engineering, McGill University, Montréal, Québec H3A 2K6, Canada 
[1] 
Constantine M. Dafermos. Hyperbolic balance laws with relaxation. Discrete & Continuous Dynamical Systems  A, 2016, 36 (8) : 42714285. doi: 10.3934/dcds.2016.36.4271 
[2] 
Graziano Crasta, Benedetto Piccoli. Viscosity solutions and uniqueness for systems of inhomogeneous balance laws. Discrete & Continuous Dynamical Systems  A, 1997, 3 (4) : 477502. doi: 10.3934/dcds.1997.3.477 
[3] 
Rinaldo M. Colombo, Graziano Guerra. Hyperbolic balance laws with a dissipative non local source. Communications on Pure & Applied Analysis, 2008, 7 (5) : 10771090. doi: 10.3934/cpaa.2008.7.1077 
[4] 
Laura Caravenna. Regularity estimates for continuous solutions of αconvex balance laws. Communications on Pure & Applied Analysis, 2017, 16 (2) : 629644. doi: 10.3934/cpaa.2017031 
[5] 
Claude Vallée, Camelia Lerintiu, Danielle Fortuné, Kossi Atchonouglo, Jamal Chaoufi. Modelling of implicit standard materials. Application to linear coaxial nonassociated constitutive laws. Discrete & Continuous Dynamical Systems  S, 2013, 6 (6) : 16411649. doi: 10.3934/dcdss.2013.6.1641 
[6] 
B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems & Imaging, 2009, 3 (3) : 405452. doi: 10.3934/ipi.2009.3.405 
[7] 
Yanni Zeng. L^{P} decay for general hyperbolicparabolic systems of balance laws. Discrete & Continuous Dynamical Systems  A, 2018, 38 (1) : 363396. doi: 10.3934/dcds.2018018 
[8] 
Piotr Gwiazda, Piotr Orlinski, Agnieszka Ulikowska. Finite range method of approximation for balance laws in measure spaces. Kinetic & Related Models, 2017, 10 (3) : 669688. doi: 10.3934/krm.2017027 
[9] 
Stephan Gerster, Michael Herty. Discretized feedback control for systems of linearized hyperbolic balance laws. Mathematical Control & Related Fields, 2019, 9 (3) : 517539. doi: 10.3934/mcrf.2019024 
[10] 
Kenta Nakamura, Tohru Nakamura, Shuichi Kawashima. Asymptotic stability of rarefaction waves for a hyperbolic system of balance laws. Kinetic & Related Models, 2019, 12 (4) : 923944. doi: 10.3934/krm.2019035 
[11] 
P. Balseiro, M. de León, Juan Carlos Marrero, D. Martín de Diego. The ubiquity of the symplectic Hamiltonian equations in mechanics. Journal of Geometric Mechanics, 2009, 1 (1) : 134. doi: 10.3934/jgm.2009.1.1 
[12] 
Elena Rossi. Wellposedness of general 1D initial boundary value problems for scalar balance laws. Discrete & Continuous Dynamical Systems  A, 2019, 39 (6) : 35773608. doi: 10.3934/dcds.2019147 
[13] 
Nicolas Fournier. Particle approximation of some Landau equations. Kinetic & Related Models, 2009, 2 (3) : 451464. doi: 10.3934/krm.2009.2.451 
[14] 
Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869898. doi: 10.3934/ipi.2016025 
[15] 
Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure & Applied Analysis, 2015, 14 (4) : 13571376. doi: 10.3934/cpaa.2015.14.1357 
[16] 
Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order HamiltonJacobiBellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems  A, 2015, 35 (9) : 39333964. doi: 10.3934/dcds.2015.35.3933 
[17] 
Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 10011014. doi: 10.3934/proc.2011.2011.1001 
[18] 
Ning Lu, Ying Liu. Application of support vector machine model in wind power prediction based on particle swarm optimization. Discrete & Continuous Dynamical Systems  S, 2015, 8 (6) : 12671276. doi: 10.3934/dcdss.2015.8.1267 
[19] 
Michael Böhm, Martin Höpker. A note on modelling with measures: Twofeatures balance equations. Mathematical Biosciences & Engineering, 2015, 12 (2) : 279290. doi: 10.3934/mbe.2015.12.279 
[20] 
Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Wellposedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307340. doi: 10.3934/ipi.2013.7.307 
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]