
Previous Article
Stable and unstable periodic orbits in complex networks of spiking neurons with delays
 DCDS Home
 This Issue

Next Article
New insights into the classical mechanics of particle systems
Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/GrossPitaevskii equations
1.  Department of Applied Physics and Applied Mathematics, Columbia University, 200 S. W. Mudd, 500 W. 120th St., New York City, NY 10027, United States, United States 
[1] 
Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 15711601. doi: 10.3934/cpaa.2016003 
[2] 
Thomas Bartsch, Zhongwei Tang. Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 726. doi: 10.3934/dcds.2013.33.7 
[3] 
Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 21052123. doi: 10.3934/cpaa.2017104 
[4] 
Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems, 2001, 7 (3) : 525544. doi: 10.3934/dcds.2001.7.525 
[5] 
Naoufel Ben Abdallah, Yongyong Cai, Francois Castella, Florian Méhats. Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential. Kinetic & Related Models, 2011, 4 (4) : 831856. doi: 10.3934/krm.2011.4.831 
[6] 
Songbai Peng, Aliang Xia. Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential. Communications on Pure & Applied Analysis, 2021, 20 (11) : 37233744. doi: 10.3934/cpaa.2021128 
[7] 
Lassaad Aloui, Slim Tayachi. Local wellposedness for the inhomogeneous nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 54095437. doi: 10.3934/dcds.2021082 
[8] 
KuanHsiang Wang. An eigenvalue problem for nonlinear SchrödingerPoisson system with steep potential well. Communications on Pure & Applied Analysis, 2021, 20 (4) : 14971519. doi: 10.3934/cpaa.2021030 
[9] 
César E. Torres Ledesma. Existence and concentration of solutions for a nonlinear fractional Schrödinger equation with steep potential well. Communications on Pure & Applied Analysis, 2016, 15 (2) : 535547. doi: 10.3934/cpaa.2016.15.535 
[10] 
Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete & Continuous Dynamical Systems  B, 2006, 6 (1) : 116. doi: 10.3934/dcdsb.2006.6.1 
[11] 
Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29 (5) : 34493469. doi: 10.3934/era.2021047 
[12] 
Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$concentration of the blowup solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119127. doi: 10.3934/mcrf.2011.1.119 
[13] 
D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2002, 8 (3) : 563584. doi: 10.3934/dcds.2002.8.563 
[14] 
Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp wellposedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487504. doi: 10.3934/cpaa.2018027 
[15] 
Takafumi Akahori. Low regularity global wellposedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261280. doi: 10.3934/cpaa.2010.9.261 
[16] 
Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global wellposedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete & Continuous Dynamical Systems, 2007, 19 (1) : 3765. doi: 10.3934/dcds.2007.19.37 
[17] 
Zihua Guo, Yifei Wu. Global wellposedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 257264. doi: 10.3934/dcds.2017010 
[18] 
Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global wellposedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure & Applied Analysis, 2007, 6 (4) : 10231041. doi: 10.3934/cpaa.2007.6.1023 
[19] 
Junichi Segata. Wellposedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 10931105. doi: 10.3934/dcds.2010.27.1093 
[20] 
Boling Guo, Jun Wu. Wellposedness of the initialboundary value problem for the fourthorder nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021205 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]