
Previous Article
Stable and unstable periodic orbits in complex networks of spiking neurons with delays
 DCDS Home
 This Issue

Next Article
New insights into the classical mechanics of particle systems
Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/GrossPitaevskii equations
1.  Department of Applied Physics and Applied Mathematics, Columbia University, 200 S. W. Mudd, 500 W. 120th St., New York City, NY 10027, United States, United States 
[1] 
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 54375473. doi: 10.3934/cpaa.2020247 
[2] 
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : . doi: 10.3934/cpaa.2020276 
[3] 
José Luis López. A quantum approach to KellerSegel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems  A, 2020 doi: 10.3934/dcds.2020376 
[4] 
Justin Holmer, Chang Liu. Blowup for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blowup profiles. Communications on Pure & Applied Analysis, , () : . doi: 10.3934/cpaa.2020264 
[5] 
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020450 
[6] 
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020436 
[7] 
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020456 
[8] 
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020461 
[9] 
Shiqi Ma. On recent progress of singlerealization recoveries of random Schrödinger systems. Electronic Research Archive, , () : . doi: 10.3934/era.2020121 
[10] 
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the SchrödingerPoisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020447 
[11] 
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 15031528. doi: 10.3934/era.2020079 
[12] 
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Kleingordon equation. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020448 
[13] 
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 277296. doi: 10.3934/dcds.2020138 
[14] 
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast nonconvex lowrank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : . doi: 10.3934/ipi.2020076 
[15] 
Antoine Benoit. Weak wellposedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 54755486. doi: 10.3934/cpaa.2020248 
[16] 
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local wellposedness and illposedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems  A, 2020 doi: 10.3934/dcds.2020382 
[17] 
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 455469. doi: 10.3934/dcds.2020380 
[18] 
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 413438. doi: 10.3934/dcds.2020136 
[19] 
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020345 
[20] 
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems  A, 2020 doi: 10.3934/dcds.2020384 
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]