\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations

Abstract Related Papers Cited by
  • The Kneser theorem for ordinary differential equations without uniqueness says that the attainability set is compact and connected at each instant of time. We establish corresponding results for the attainability set of weak solutions for the 3D Navier-Stokes equations satisfying an energy inequality. First, we present a simplified proof of our earlier result with respect to the weak topology in the space $H$. Then we prove that this result also holds with respect to the strong topology on $H$ provided that the weak solutions satisfying the weak version of the energy inequality are continuous. Finally, using these results, we show the connectedness of the global attractor of a family of setvalued semiflows generated by the weak solutions of the NSE satisfying suitable properties.
    Mathematics Subject Classification: 35B40, 35B41, 35Q30, 37B25, 58C06.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(99) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return