
Previous Article
Blowup in a subdiffusive medium with advection
 DCDS Home
 This Issue

Next Article
Discrete and continuous random water wave dynamics
Local wellposedness in low regularity of the MKDV equation with periodic boundary condition
1.  Department of Mathematics, Kyoto University, Kyoto 6068502, Japan, Japan 
2.  Department of Mathematics, Hokkaido University, Sapporo 0600810, Japan 
[1] 
Takamori Kato. Global wellposedness for the Kawahara equation with low regularity. Communications on Pure & Applied Analysis, 2013, 12 (3) : 13211339. doi: 10.3934/cpaa.2013.12.1321 
[2] 
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local wellposedness and illposedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 26992723. doi: 10.3934/dcds.2020382 
[3] 
Magdalena Czubak, Nina Pikula. Low regularity wellposedness for the 2D MaxwellKleinGordon equation in the Coulomb gauge. Communications on Pure & Applied Analysis, 2014, 13 (4) : 16691683. doi: 10.3934/cpaa.2014.13.1669 
[4] 
Takafumi Akahori. Low regularity global wellposedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261280. doi: 10.3934/cpaa.2010.9.261 
[5] 
Hyungjin Huh, Bora Moon. Low regularity wellposedness for GrossNeveu equations. Communications on Pure & Applied Analysis, 2015, 14 (5) : 19031913. doi: 10.3934/cpaa.2015.14.1903 
[6] 
Lin Shen, Shu Wang, Yongxin Wang. The wellposedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691719. doi: 10.3934/era.2020036 
[7] 
Boris Kolev. Local wellposedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167189. doi: 10.3934/jgm.2017007 
[8] 
Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local wellposedness of the Boltzmann equation with polynomially decaying initial data. Kinetic & Related Models, 2020, 13 (4) : 837867. doi: 10.3934/krm.2020029 
[9] 
Hartmut Pecher. Local wellposedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673685. doi: 10.3934/cpaa.2014.13.673 
[10] 
Jae Min Lee, Stephen C. Preston. Local wellposedness of the CamassaHolm equation on the real line. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 32853299. doi: 10.3934/dcds.2017139 
[11] 
Yongye Zhao, Yongsheng Li, Wei Yan. Local Wellposedness and Persistence Property for the Generalized Novikov Equation. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 803820. doi: 10.3934/dcds.2014.34.803 
[12] 
Lassaad Aloui, Slim Tayachi. Local wellposedness for the inhomogeneous nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 54095437. doi: 10.3934/dcds.2021082 
[13] 
Wenming Hu, Huicheng Yin. Wellposedness of low regularity solutions to the second order strictly hyperbolic equations with nonLipschitzian coefficients. Communications on Pure & Applied Analysis, 2019, 18 (4) : 18911919. doi: 10.3934/cpaa.2019088 
[14] 
Hiroyuki Hirayama. Wellposedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 15631591. doi: 10.3934/cpaa.2014.13.1563 
[15] 
Hartmut Pecher. Low regularity wellposedness for the 3D Klein  Gordon  Schrödinger system. Communications on Pure & Applied Analysis, 2012, 11 (3) : 10811096. doi: 10.3934/cpaa.2012.11.1081 
[16] 
Kiyeon Lee. Low regularity wellposedness of Hartree type Dirac equations in 2, 3dimensions. Communications on Pure & Applied Analysis, 2021, 20 (11) : 36833702. doi: 10.3934/cpaa.2021126 
[17] 
Fucai Li, Yanmin Mu, Dehua Wang. Local wellposedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741784. doi: 10.3934/krm.2017030 
[18] 
E. Compaan, N. Tzirakis. Lowregularity global wellposedness for the KleinGordonSchrödinger system on $ \mathbb{R}^+ $. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 38673895. doi: 10.3934/dcds.2019156 
[19] 
Sergey Zelik, Jon Pennant. Global wellposedness in uniformly local spaces for the CahnHilliard equation in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 461480. doi: 10.3934/cpaa.2013.12.461 
[20] 
Luiz Gustavo Farah. Local solutions in Sobolev spaces and unconditional wellposedness for the generalized Boussinesq equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 15211539. doi: 10.3934/cpaa.2009.8.1521 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]